Design and Implementation of Energy Audit with IOT and ARDUINO

[Prof. Pravin Balbudhe, Barkha Jais, Payal Burbure, Kajal Kalbende, Shweta Warkad, Ashwini Hemane] Volume 6: Issue 1, March 2019, pp  

DOI: 10.26706/IJAEFEA.1.6.20190308

Abstract This project develop for in industry to save not needed circumstances consumption of energy and to known what is exact requirement of industry and it is also developed for analysis the system, hence the proposed system is taking this development at next level by enhancing the term IoT(Internet Of Things) for industrial remote energy parameter monitoring system.
The objective of energy audit is to identify the end use of energy in industry, and this feasibility study leads to implementation of energy management program. Remote monitoring of different industries sensor, machineries, energy or the power panels are the most demanding products and many organizations are working on it. Up till now we have seen only computers, mobiles and very few device are connected to internet directly.
Still many embedded system or the devices needs to redesign so that they can communicate with other world through the internet. In simple word we called it as a IoT(Internet of Things). By using IoT device we are developing project named as “Design and Implementation of Energy audit with IOT and ARDUINO”.

Index terms - Internet of Things (IoT); Arduino board; GSM Modem; Microcontroller ATMega328P; Modbus-RS232 converter 
[1] P. Jadhao, K. Mankar “A Review On Energy Consumption Monitoring And Analysis System”, International Research Journal on Engineering and Technology Vol.3, Issue1, January 2016.

[2] P. Thamarai, R. Amudhevalli, “Energy Monitoring System USING PLC & SCADAS ”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 3, Issue 2, Febuary 2014.

[3] Hong-Chan Chang and Cheng-Chien Kuo, “Wireless Energy Management System for Residential Area”, International Journal of Environmental Science and Development, Vol. 4, No. 5, October 2013.

[4]  Adnan Rashdi, Rafia Malik, Islamabad, Pakistan, “Remote Energy Monitoring, Profiling and Control Through GSM Network”, International Conference on Innovations in Information Technology (IIT) 2012.

[5] Himshekhar Das, L.C.Saikia, “GSM Enabled Smart Energy Meter and Automation of Home Appliances”, PP-978-1-4678-6503-1, 2015 IEEE.

[6] Cheng Pang,Valierry Vyatkin,Yinbai Deng, Majidi Sorouri, “Virtual smart metering in automation and simulation of energy efficient lighting system” IEEE 2013.

[7] Amit Bhimte, Rohit K.Mathew, Kumaravel S, “Development of smart energy meter in labview for power distribution systems”, “IEEE INDICON 2015 1570186881”, 2015.

[8]  H. Arasteh, V. Hosseinnezhad, V.Loia, A.Tommasetti, O.Troisi, M.Shafie Khan, P.Siano, “IoT Based Smart Cities: A survey” IEEE 978-1-5090-2320-2/1631.00,2016.

Read More »

ScanningTour of Innovative Vehicle Towing Through Crane

[Umeshwari Sahare, Ashwini Khobragade, Shivani Mirase, Gayatri Bansod, Divya Khadse, Pradip Balbudhe] Volume 6: Issue 1, March 2019, pp  

DOI: 10.26706/IJAEFEA.1.6.20190306

Abstract The Prospective system is basically a vehiculate system construct to auditor and track the activity of the drag crane which belongs to the Mumbai traffic police. The system is deployed inside the automobile whose location is to be determined and pursued real time.The main detached of the arrangement is to keep a watch on activities of the crane driver, provide a direct access of the goods to the officials of the MTP, count the number of vehicles towed per day and keep a watch on damaged to the tracked vehicle. The system uses the GPS machineries that is one of the most accepted ways to track vehicle. A Raspberry pi is recycled to manage the GPS and GPRS module and gets the geographical co-ordinates at regular intervals. The raspberry pi is recycled to broadcast the data and store the collection of goods. The officials at MTP will be continuously able to track the vehicle on demand.This documents presents some data to vehiculate arrangement and actions on constructive implementation.

Index terms - :GPS, MTP, Raspberry pi, Vehicle tracking, GSM.
[1] Vaibhav Hans, Parminder Singh Sethi and Jatin Kinra,“An approach to IOT base car parking and skepticism system on cloud”,Universal convenience on verdant gauge and Internet of Thing(ICGIOT), Noida, October 2015.

[2] Vinay Sagar K N and Kusuma S M,“Home Automaton and Internee-t of Things”, Foreign magazine construction and Technology (IRJET) e-ISSN:2395–0056, Content:02 Issue:03, June 2015.

[3] Nagalakshmi T S and Nirmala L,“Automation of Automobile using IOT: A Survey”, Journal of universal Leading Engineering and Research Development (IJAERD) e-(O)-2348-4470, Content 3, Issue 4, April-2016.

Read More »

Design of Smartphone Application for Farmer

[Prof. Vivekanand Thakare, Kamal Patil, Purushottam Rathi, Neha Shahu, Pooja Gupta, Charan Chaple] Volume 6: Issue 1, March 2019, pp  

DOI: 10.26706/IJAEFEA.1.6.20190305

Abstract In India most of the population is depending on agriculture and Farmer is the backbone of the Indian economy. The system consists of smartphone applications. The System can be used by farmers on the android application on mobile devices. The paper proposes the use of data mining to provide recommendations to farmers for crops, crop information, and identification of appropriate fertilizer. The smart-phone is used very commonly by everyone who is educated or non-educated. This application can provide different languages, which is Hindi and English this language commonly used and easy to use on the system.

Index terms - Smartphone, data mining, database, farmer-to-supplier, dealers, retailer, supplier, Crop, Android.
[1] D. Magheshkumar, M. Pavithra “Forming Assistant Web Service”, IC Value: 45.98, Volume 5 Issue IV, ISSN: 2321-9653, April 2017.

[2] Prof. Aradhana D, Shiva Prasad K S, Shrivaishnavi J K, P. Sowmya, Tina Agarwal “Agriculture Based Android Application”, ISSN: 2349-3224, Volume 3 Issue 2 may 2016

[3] Minwoo Ryu, Jaeseok Yun, Ting Miao, Il-Yeup Ahn, Sung-Chan Choi, Jaeho Kim “Design and Implementation of a Connected Farm for Smart Farming System” DOI: 10.1109/ICSENS.2015.7370624 November 2015

[4] Santosh G.Karkhile, Sudarshan G.Ghuge “A Modern Farming Techniques using Android Application” International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 4, Issue 10, October 2015

[5]  Kiran Shinde, Jerrin Andrei, Amey Oke “Web Based Recommendation System for Farmers” IJRITCC, Available @, March 2015

[6] Vimal B. Patel, Rahul G. Thakkar, Dr. Sangeeta Ahuja “Agricultural Android Application” International Journal of Computer Science And Technology, IJCST Vol. 5, Issue 2, April – June 2014

[7]  Vimal B. patel, Rahul G. Thakkar, Bankim L.Radadiya “An Android Application for Farmers to Disseminate Horticulture Information”  International Journal of Computer Application (0975 - 8887) Volume 88 – No.4, February 2014.

[8] Yukikazu Murakami, Slamet Kristanto Tirto Utomo, Keita Hosono, Takeshi Umezawa, Noritaka Osawa “iFarm: Development of Cloud-based System of Cultivation Management for Precision Agriculture” IEEE 2nd Global Conference on Consumer  Electronics(GCCE), 2013.

Read More »

An Efficient System for Transmission of Data over Network using QKD

[Harshal Choukhe, Shitan Dhir, Mahesh Punde, Kanchan Kukde, Kiran Birgodiya, Ruchira Selote] Volume 6: Issue 1, March 2019, pp  

DOI: 10.26706/IJAEFEA.1.6.20190304

Abstract Most of the web based applications requires a security for the data. Providing security to the data is a process known as cryptography, which consists of encryption and decryption process. Most of the conventional cryptographic algorithms used in the environments of communication network, based on mathematical models and computational assumptions, are unsafe and apt by many attackers. Problems associated with private-key encryption process is, firstly it depends entirely on the secrecy of the key, secondly it requires two parties who initially shares no secret information to exchange a secret key and an eavesdropper can snoop secret key as it is being exchanged. In Public-key encryption there is no key distribution problem; however, security relies on unproven mathematical assumptions such as the difficulty in factoring large integers. To overcome above mentioned limitations associated with both approaches, we have designed an approach to augment private key encryption with quantum key distribution. Experimental results showed that proposed approach outperforms better than existing approaches.

Index terms - Ciphertext, Plaintext, AES, SHA, Quantum Key distribution (QKD)

[1] Mikio Fujiwara, Tomoyasu Domeki, Shiho Moriai, and Masahide Sasaki, “Highly Secure Network Switches with Quantum Key Distribution Systems”, International Journal of Network Security, Vol.17, No.1, PP.34–39, Jan. 2015.

[2] C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, , and H. Yeh, “Current status of the DARPA quantum network,” in Quantum Information and Computation III, pp. 138–149. SPIE, 2005.

[3] Sanchez-Avilaf; R. Sanchez-Reillot, The Rijndael Block Cipher (AES Proposal): A Comparison with DES, Universidad Politecnica de Madrid, 28040 Madrid, Spain.

[4] Tianqi Zhou,Jian Shen ,Xiong Li,Chen Wang and Jun Shen,”Quantum Cryptography for the Future Internet andthe Security Analysis”Chinese Academy of Sciences, Beijing, China Hunan University of Science and Technology, Xiangtan,China.

[5] J. Aditya, P. Shankar Rao,” Quantum Cryptography” Dept of CSE, Andhra University,AndraPradesh,India.

[6] Richard J. Hughes,D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan and M. Schauer,”Quantum Cryptography” University of California Physics Division Los Alamos National Laboratory Los Alamos, NM 87545,USA.

[7] Mart Haitjema,”A Survey of the Prominent Quantum Key Distribution Protocols”University of Washington,USA.

[8] Alan Mink, Sheila Frankel and Ray Perlner,” Quantum Key Distribution (QKD) andCommodity Security Protocols: Introduction and  Integration”National Institute of Standards and Technology (NIST),100 Bureau Dr., Gaithersburg, MD 20899.

[9] R. D. Sharma and A. De, “A new secure model for quantum key distribution protocol,” in Industrial and Information Systems (ICIIS), 2011 6th IEEE International Conference on. IEEE, 2011, pp. 462–466.

[10] N. S. Yanofsky and M. A. Mannucci, Quantum computing for computer scientists. Cambridge University Press Cambridge, 2008, vol. 20.

[11] M. D. H. Kulkarni, “Research directions in quantum cryptography and quantum key distribution,” International Journal of Scientific and Research Publications, vol. 2, no. 6, June 2012.

Read More »

Design and Implementation of Automatic Water Distribution System with Pre-paid & Post-paid Facility

[Vivekanand P. Thakare, Saurabh shinde, Rajat hadge, Akshay chawale, Mohit swami, Amit turak, Rahul singh] Volume 6: Issue 1, March 2019, pp  

DOI: 10.26706/IJAEFEA.1.6.20190303

Abstract Municipal Corporation Water Distribution System is manual and has no system to monitor the consumption of water. Each individual have their own capacity for usage of water but everyone have to pay same amount for their consumption. And if any person fails to pay water bill then there is no such system which can restrict the water supply to their houses. According to study, there is a case where one family gets water supply for 1 hr/day and another family gets 24 hours water supply. There is no system that can monitor the flow of water and consumption of water.  The “Prepaid and Post-paid Water Distribution Controller” been developed to override the problems prevailing in the existing manual system. This system is designed for the municipal corporations to carry out drinking water operation in smooth and effective manner. Water Distribution Controller is the system which can control the usage of water according to the bill payment by the user.

Index terms - Water supply system, IOT, water level sensor, flow sensor, solenoid valve, GSM 800.

    [1]  Shifeng fang, LiDaXu, “Design a water environment monitoring system based in wireless sensor network”, IEEE TRANSACTINS ON IDUSTRIAL INFORMATIC, VOL. 10, NO. 2, MAY 2016, PP:1596-1605.

    [2] Chen Tao, Xu Ling, Su Guofeng, Yuan Hongyong, Huang Quanyi, “Small water monitoring system using wireless sensor network at home/offices”2014. Sixth international conference on Measuring technology and Mechatronics Automation. pp:151-154.

[3] V.C. Sharath, S. Suhas, B.N. Sachin Jain, S.B. Vinay Kumar, C. Prasanna Kumar, “Water Quality Monitoring System Using Zigbee based Wirelss Sensor Network,”  in Advances in Electronics, Computers and communications (ICAECC), 2014 International Conference on, October 2015,pp. 1-5.

      [4] Ultrasonic Sensor. “HC-SR datasheet”. [Online].Available :

[5] D. Giusto, A. Iera, G. Morabito, and L. Atzori, The Internet of Things. Springer-Verlag, 2010.

[6] L. Atzori,  A. Iera, and G. Morabito, “The internet of things: A  survey, “Computer Networks, vol. 54, no. 15, pp. 2787-2805, 2010.

[7]  Thomton Inc., “Product Guide for Process Measurment Instrumentation,” Thomton Inc,, USA, 2000.

[8]  Falmouth        Scientific, Inc., “Specification Data Sheets,”   Falmouth Scientific,    Inc.,   USA, 2000.

[9]  AJ. Fougere, N.L. Brown and E.  Hohart, ‘Btegrated CTD oceanographic data collection platform,” OCEANOLOGY 92, Brighton, England, 1992.

[10] Amber Science Inc., ‘Model 4081 conductivity meter,” Amber Science Inc., USA, 1999.

[11] Theoder R. Barben, ‘Tour electrode conductivity sensor,” US Patent, Appl. No. 641,254, Oct.  1978.

     [12] M.   H.  FotouhiGhazvnii, M. Vahabi, M. F. A. Raised and R. S. A. Raja Abdullah, “Energy Efficienc in M 802.15.4for Wireless Sensor Networks,” Proceedings ofIEEE 2008 6th national Conference on Telecommunication Technologies and IEEE  2008  2nd Malaysia Conference on Photonics , Putrajya, Malaysia, Aug., 2008,pp.  289-294.

Read More »

Solenoidal Valve Actuation System For Four Stroke IC Engine

[Vivek Gurve, Larwin Ukey, Lokesh Nagtode, Amit Meshram, Anup Naktode, Sudhanshu Gaikwad, Gyanprakash Yadav, Hemant Bansod] Volume 6: Issue 1, March 2019, pp  

DOI: 10.26706/IJAEFEA.1.6.20190302

Abstract There is a huge competition between manufacturers to make advancement in engine technology. However, one component has stayed unaltered in the internal combustion engine advancement i.e., the camshaft has been the essential methods for controlling the valve actuation and timing, and therefore impact the overall performance of the vehicle.
The issue in utilizing camshafts is being significant power wastage in accelerating and decelerating the parts of the valve train. The friction of camshafts, springs, cam belts and so on, likewise denies us of valuable power and declines efficiency not to mention contributing to wear and tear.
It is a well-known fact that in the event that valves could be controlled autonomously in an Internal Combustion Engine, at that point there would be benefits like increase in power output, decrease in emission, and significant increase in efficiency. Camless innovation is catching the fate of internal combustion engines. In Camless technology valve movement is actuated and controlled by actuators of the electro-mechanical, electro-hydraulic and electromagnetic type.

Index terms - Microcontroller, Amplifier ,Motor Driver ,Voltage Regutaor IC7805, Reelay Circuit, Led Display.
[1] Dobson, N. and Muddell, G., 1993, “Active Valve Train System Promises to Eliminate Camshafts,” Automotive Engineer February / March 1993

[2] Anderson, M; Tsao, T-C; and Levin, M., 1998, “Adaptive Lift Control for a Camless Electrohydraulic Valvetrain,” SAE Paper No. 981029

[3] Kim, D; Anderson, M; Tsao, T-C; and Levin, M., 1997, “Dynamic Model of a Springless Electrohydraulic Valvetrain,” SAE Paper No. 970248

[4] Ashhab, M-S; and Stefanopoulou, A., 2000, “Control-Oriented Model for Camless Intake Process – Part 1,” Transactions of the ASME Vol 122, March 2000

[5] Ashhab, M-S; and Stefanopoulou, A., 2000, “Control of a Camless Intake Process – Part II,” ASME Journal of Dynamic Systems, Measurement, and Control – March 2000

[6] Mauck, L; Menchaca, J; and Lynch, C., 2000, “Piezoelectric Hydraulic Pump Development,” Proceedings of SPIE – The International Society for Optical Engineering 3985 Mar 6-9, 2000

[7] Yokoat, S; and Akutu, K., 1991, “Fast-acting Electro-hydraulic Digital Transducer. (A Poppet-type On-off Valve Using a Multilayered Piezoelectric Device),” JSME International Journal, Series 2: Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties Vol. 34 No. 4, Nov. 1991

[8] Roberts, D; Hagood, N; Su, Y-H; Li, H; Carretero, J., 2000, “Design of a Piezoelectrically-driven Hydraulic Amplification Microvalve for High Pressure, High Frequency Applications,” Proceedings of SPIE – The International Society for Optical Engineering 3985 Mar 6-9, 2000

[9] Electromagnetic Fully Flexible Valve Actuator by David Cope and Andrew

[10] Wright (2006-1-0044), SAE International

[11] Design and Modification of camless engine : A review, International Journal of

[12] Scientific and Engineering Research Volume 9, Issue 5, May 2018 ISSN 2229- 5518

[13] Design and Modification of camless engine : A review, International Journal of Scientific and Engineering Research Volume 9, Issue 5, May 2018 ISSN 2229-5518

[14] Electromagnetic Fully Flexible Valve Actuator by David Cope and Andrew Wright (2006-1-0044), SAE International

[15] Dr. Kirpal Singh, “AUTOMOBILE ENGINEERING” VOL. 1 by 13th edition 2012, Standard publication, Delhi 13th edition 2013.

[16] Dr. Kirpal Singh, “AUTOMOBILE ENGINEERING” VOL.2 by Standard publication, Delhi 13th edition 2014. 


Read More »

A VEM–based mesh–adaptive strategy for potential problems

[Annamaria Mazzia, Flavio Sartoretto] Volume 6: Issue 1, March 2019, pp  

DOI: 10.26706/IJAEFEA.1.6.20190301

Abstract The Virtual Element Method (VEM) is an evolution of the mimetic finite difference method which overcomes many lim- itations affecting classic Finite Element Methods (FEM). VEM for 2D problems allows for exploiting meshes consist- ing of any polygonal elements.  No limitations on their in- ternal angles are needed. Hanging nodes are easily treated. Notably, VEM is well apt to mesh–adaptive algorithms. In this paper we detail an implementation of mesh–adaptive VEM for potential problems.  We suggest a fresh, promis- ing approach.  We show on suitable test problems that a gain in efficiency can be obtained, respect to uniform, fine discretizations.

Index terms - VEM,  Mesh  Adaptivity,  Poisson Problem.
[1] P. F. Antonietti, L. Beirão da Veiga, D. Mora, and M. Verani.  A stream virtual element for- mulation  of  the  stokes  problem  on  polygonal meshes.  SIAM Journal on Numerical Analysis, 52(1):386–404, 2014.

[2] P. F. Antonietti, L. Beirão da Veiga, S. Scacchi, and M. Verani.  A C1  virtual element method for the Cahn-Hilliard equation with polygonal meshes.  SIAM Journal on Numerical Analysis, 54(1):34–56, 2016.

[3] P.  F.  Antonietti,  M.  Bruggi,  S.  Scacchi,  and M. Verani. On the Virtual Element Method for topology optimization on polygonal meshes:  A numerical study.  Computers and Mathematics with Applications, 74(5):1091–1109, 2017.

[4] P.  F.  Antonietti,  S.  Giani,  and  P.  Houston. hp–Version Composite Discontinuous Galerkin Methods  for  elliptic  problems  on  complicated domains.  SIAM J. Sci. Comput., 35(3):A1417– A1439, 2013.

[5] P.  F.  Antonietti,   G.  Manzini,   and  M.  Ve- rani.  The fully nonconforming Virtual Element method for biharmonic problems. Mathematical Models & Methods in Applied Sciences,  28(2), 2018.

[6] P. F. Antonietti, L. Mascotto, and M. Verani. A multigrid algorithm for the p–version of the Virtual Element method.  ESAIM: Mathemati- cal Modelling and Numerical Analysis, 2018. In press.

[7] B. Ayuso de Dios, K. Lipnikov, and G. Manzini. The  nonconforming  virtual  element  method. ESAIM: Mathematical Modelling and Numerical Analysis, 50(3):879–904, 2016.

[8] F.    Bassi,      L.     Botti,     and    A.     Colombo. Agglomeration-based  physical  frame  DG  dis- cretizations: An attempt to be mesh free. Math. Models  Methods  Appl.  Sci.,  24(8):1495–1539, 2014.

[9] R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in fi- nite element methods. In A. Iserles, editor, Acta Numerica,  pages 1–102. Cambridge University Press, Cambridge, 2001.

[10] L.  Beirão  da  Veiga,  F.  Brezzi,  A.  Cangiani, G. Manzini, L. D. Marini, and A. Russo. Basic principles of virtual element methods.  Mathe- matical Models & Methods in Applied Sciences, 23:119–214, 2013.

[11] L.  Beirão  da  Veiga,   F.  Brezzi,   and  L.  D. Marini.   Virtual  elements  for  linear  elasticity problems.   SIAM Journal on Numerical Anal- ysis, 51(2):794–812, 2013.

[12] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo.   Mixed virtual element methods for general second order elliptic problems on polyg- onal meshes.  ESAIM: Mathematical Modelling and Numerical Analysis, 50(3):727–747, 2016.

[13] L. Beirão da Veiga, A. Chernov, L. Mascotto, and  A.  Russo.     Basic  principles  of  hp  virtual elements on quasiuniform meshes.   Math- ematical Models & Methods in Applied Sciences, 26(8):1567–1598, 2016.

[14] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. Arbitrary order nodal mimetic discretizations of elliptic problems on polygonal meshes.   SIAM Journal  on  Numerical  Analysis,   49(5):1737– 1760, 2011.

[15] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. The  Mimetic  Finite  Difference  Method,   vol- ume 11 of MS&A. Modeling,  Simulations and Applications. Springer, I edition, 2014.

[16] L. Beirão da Veiga, C. Lovadina, and D. Mora. A  virtual  element  method  for  elastic  and  in-elastic problems on polytope meshes. Computer Methods in Applied Mechanics and Engineering, 295:327–346, 2015.

[17] L. Beirão da Veiga and G. Manzini.  A virtual element method with arbitrary regularity. IMA Journal on Numerical Analysis, 34(2):782–799, 2014. DOI: 10.1093/imanum/drt018, (first pub- lished online 2013).

[18] L. Beirão da Veiga and G. Manzini.   Residual a posteriori error estimation for the virtual el- ement method for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analy- sis, 49:577–599, 2015.

[19] L. Beirão da Veiga, G. Manzini, and M. Putti. Post-processing of solution and flux for the nodal mimetic  finite  difference  method. Numerical Methods for PDEs, 31(1):336–363, 2015.

[20] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo.   The hitchhiker’s guide to the Vir- tual Element Method. Mathematical Models and Methods in Applied Sciences, 24(8):1541–1573, 2014.

[21] L. Beirão da Veiga, A. Chernov, L. Mascotto, and A. Russo.  Exponential convergence of the hp virtual element method in presence of cor- ner singularities.  Numerische Mathematik, 138, 2018.

[22] M. F. Benedetto, S. Berrone, S. Pieraccini, and S. Scialò. The virtual element method for dis- crete fracture network simulations.   Computer Methods in Applied Mechanics and Engineering, 280(0):135 – 156, 2014.

[23] S. Berrone, A. Borio, and G. Manzini.  SUPG stabilization for the nonconforming virtual el- ement  method  for  advection-diffusion-reaction equations.   Computer Methods in Applied Me- chanics and Engineering, 340:500–529, 2018.

[24] F. Brezzi, R. S. Falk, and L. D. Marini.   Ba- sic principles of mixed virtual element methods. ESAIM. Mathematical Modelling and Numerical Analysis, 48(4):1227–1240, 2014.

[25] F. Brezzi and L. D. Marini.   Virtual element methods for plate bending problems. Computer Methods in Applied Mechanics and Engineering, 253:455–462, 2013.

[26] A.  Cangiani,   Z.  Dong,   and  E.  Georgoulis. hp-version  space-time  discontinuous  Galerkin methods  for  parabolic  problems  on  prismatic meshes. SIAM Journal on Scientific Computing, 39(4):A1251–A1279, 2017.

[27] A.  Cangiani,  E.  Georgoulis,  and  P.  Houston. hp-version discontinuous Galerkin Methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci., 24(10):2009–2041, 2014.

[28] A. Cangiani, E. H. Georgoulis, T. Pryer, and O. J. Sutton.  A posteriori error estimates for the virtual element method. Numerische Math- ematik, pages 1–37, 2017.

[29] A. Cangiani, V. Gyrya, G. Manzini, and O. Sutton.     Chapter  14:   Virtual  element  methods for elliptic problems on polygonal meshes.   In K.  Hormann  and  N.  Sukumar,  editors,  Gen- eralized  Barycentric  Coordinates  in  Computer Graphics and Computational Mechanics, pages 1–20. CRC Press, Taylor & Francis Group, 2017.

[30] A.   Cangiani,   G.   Manzini,   A.   Russo,   and N. Sukumar. Hourglass stabilization of the vir- tual  element  method. International  Journal on  Numerical  Methods  in  Engineering,  102(3-4):404–436, 2015.

[31] A.  Cangiani,   G.  Manzini,   and  O.  Sutton. Conforming and nonconforming virtual element methods for elliptic problems.  IMA Journal on Numerical Analysis, 37:1317–1354, 2017. (online August 2016).

[32] C. Carstensen, M. Eigel, R. H. W. Hoppe, and C. Löbhard.  A review of unified a posteriori finite element error control. Numer. Math. Theor. Meth. Appl., pages 509–558, 2012.

[33] B.  Cockburn,  D.  A.  Di  Pietro,  and  A.  Ern. Bridging the Hybrid High-order and Hybridiz- able Discontinuous Galerkin Methods.  ESAIM Math.  Model.  Numer.  Anal.,   50(3):635–650, 2016.

[34] D. A. Di Pietro, J. Droniou, and G. Manzini. Discontinuous  skeletal  gradient  discretisation methods on polytopal meshes. Journal of Com- putational Physics, 355:397–425, 2018.

[35] D. A. Di Pietro, A. Ern, and S. Lemaire.  An arbitrary-order and compact-stencil discretiza- tion of diffusion on general meshes based on lo- cal reconstruction operators.  Comput. Methods Appl. Math., 14(4):461–472, 2014.

[36] W. Dörfler.   A convergent adaptive algorithm for poisson’s equation.  SIAM J. Numer. Anal., 33(3):1106–1124, June 1996.

[37] J. Droniou. Finite volume schemes for diffusion equations: Introduction to and review of modern methods. Mathematical Models and Methods in Applied Sciences, 24(08):1575–1619, 2014.

[38] J.  Droniou,   R.  Eymard,   T.  Gallouet,   and R. Herbin.  Gradient schemes:  a generic frame- work for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci., 23(13):2395– 2432, 2013.

[39] S. Funken, D. Praetorius, and P. Wissgott.  Ef- ficient implementation of adaptive P1-FEM in Matlab.     Computational  Methods  in  Applied Mathematics, 11(4), 2011.

[40] F.  Gardini  and  G.  Vacca.   Virtual  element method for second order elliptic eigenvalue prob- lems. IMA Journal on Numerical Analysis, 2017. Preprint, arXiv:1610.03675.

[41] T. Grätsch and K.-J. Bathe.  A posteriori error estimation techniques in practical finite element analysis. Computers and Structures, pages 235– 265, 2005.

[42] V. Gyrya, K. Lipnikov, and G. Manzini.   The arbitrary order mixed mimetic finite difference method  for  the  diffusion  equation. ESAIM: Mathematical Modelling and Numerical Analy- sis, 50(3):851–877, 2016.

[43] B.  B.  T.  Kee,  G.  R.  Liu,  G.  Y.  Zhang,  and C. Lu.  A residual based error estimator using radial basis functions. Finite Elem. Anal. Des., 44(9-10):631–645, June 2008.

[44] K.  Lipnikov  and  G.  Manzini. A  high-order mimetic  method  on  unstructured  polyhedral meshes for the diffusion equation.   Journal of Computational Physics, 272:360–385, 2014.

[45] K. Lipnikov, G. Manzini, J. D. Moulton, and M.  Shashkov.     The  mimetic  finite  difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient. Journal  of  Computational  Physics,  305:111  – 126, 2016.

[46] K.  Lipnikov,  G.  Manzini,  and  M.  Shashkov. Mimetic  finite  difference  method.   Journal  of Computational Physics, 257 – Part B:1163–1227, 2014. Review paper.

[47] G. Manzini, K. Lipnikov, J. D. Moulton, and M.  Shashkov.    Convergence  analysis  of  the mimetic  finite  difference  method  for  elliptic problems with staggered discretizations of dif- fusion coefficients. SIAM Journal on Numerical Analysis, 55(6):2956–2981, 2017.

[48] G. Manzini, A. Russo, and N. Sukumar.  New perspectives on polygonal and polyhedral finite element methods. Mathematical Models & Meth- ods in Applied Sciences, 24(8):1621–1663, 2014.

[49] R. H. Nochetto, K. G. Siebert, and A. Veeser. Theory of adaptive finite element methods: An introduction. In R. DeVore and A. Kunoth, ed- itors,  Multiscale,  Nonlinear  and  Adaptive  Ap- proximation: Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday, pages 409– 542. Springer Berlin Heidelberg, Berlin, Heidel- berg, 2009.

[50] S. Rjasanow and S. Weißer. Higher order BEM- based FEM on polygonal meshes. SIAM J. Nu- mer. Anal., 50(5):2357–2378, 2012.

[51] N.  Sukumar  and  A.  Tabarraei.  Conforming Polygonal Finite Elements. Internat. J. Numer. Methods Engrg., 61(12):2045–2066, 2004.

[52] A. Tabarraei and N. Sukumar.   Extended Fi- nite Element Method on polygonal and quadtree meshes.  Comput. Methods Appl. Mech. Engrg., 197(5):425–438, 2008.

[53] C.  Talischi,  G.  H.  Paulino,  A.  Pereira,  and I.  F.  M.  Menezes.     PolyMesher:   a  general- purpose mesh generator for polygonal elements written in Matlab.   Struct. Multidisc. Optim., 45(3):309–328, 2012.

[54] O.˘Certík, F. Gardini, G. Manzini, and G. Vacca. The virtual element method for eigenvalue prob- lems with potential terms on polytopic meshes. Applications   of   Mathematics,   63(3):333–365, 2018.

[55] G. Vacca.   An H1-conforming virtual element for  Darcy  and  Brinkman  equations. Mathematical Models & Methods in Applied Sciences, 28(1):159–194, 2018.

Download full text in PDF

Read More »

Popular Posts