Modeling Cylindrical Dipole Antenna by Finite Element Method at 2400MHz

[E. El KennassiK. Janati Idrissi, L. Bousshine] Volume 2: Issue 2, June 2015
-------------------------------------------------------------------------------------------------------
Abstract—Finite element method is used for the electric field computation of a dipole antenna at the 2400 MHz frequency in the context of Dirichlet and absorbing boundary conditions. It shows that the electric field pattern, both in bi-dimensional and polar plots, has an omnidirectional property for the dipole antenna. Our results are compared against the method of moments with a good agreement.


Index Terms—finite element method, antennas, electromagnetic field, Galerkin, excitation, scattering problem, method of moments.
-----------------------------------------------------------------------------------------------------------------------------------------------------------
References
[1] A. C. Polycarpou, “Introduction to the finite element method in electromagnetics,” Synthesis Lectures on Computational Electromagnetics, vol. 1, no. 1, pp. 1-126, 2006.
[2] L. Bousshine, “The finite element method,” ENSEM Hassan II University, Casablanca, Morocco, unpublished.
[3] J. P. A. Bastos and N. Sadowski, “Electromagnetic modeling by finite element methods,” Marcel Dekker, Inc. 2003.
[4] E. El Kennassi and L. Bousshine, “The finite element method for electric field modeling near a cylinder,” [3ème Edition du Workshop Modélisation Mathématique, Informatique et Analyse numérique, Errachidia, Morocco, 2015].
[5] J. Jin, “The finite element method in electromagnetics,” John Wiley and Sons, Inc. Second Edition, 2002.
[6] C. A. Balanis, “Modern antenna handbook,” John Wiley and Sons, Inc. 2008.
[7] M. N. O. Sadiku, “Numerical techniques in electromagnetics second edition,” CRC Press LLC, 2011.
[8] 4NEC2, “American wire gauge table”.
[9] A. F. Peterson, “Absorbing boundary conditions for the vector wave equation,” Microwave and Optical Technology letters, vol. 1, no. 2, april 1988.
[10] A. Bayliss, M. Gunzburger and E. Turkel, “Boundary conditions for the numerical solution of elliptic equations in exterior regions,” NASA Langley Research Center, Report no. 80-1, January 11, 1980.
[11] A. Bayliss and E. Turkel, “Radiation boundary conditions for wave-like equations,” Communications on Pure and Applied Mathematics, John Wiley and Sons, Inc. vol. XXXIII, pp. 707-725, 1980.
[12] B. Engquist and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Mathematics of Computation, vol. 31, no. 139, pp. 629-651, july 1977.
[13]  J. P. Webb and V. N. Kanellopoulos, “absorbing boundary conditions for finite element solution of the vector wave equation,” Microwave and Optical Technology letters, vol. 2, no. 10, October 1989.
[14]  P. Persson and G. Strang, “A simple mesh generator in MATLAB,” SIAM Review, vol. 46, no. 2, pp.329-345, 2004.
[15] E. El Kennassi and L. Bousshine, “Three-dimensional mesh generation using Delaunay triangulation,” IOSR Journal of Mechanical and Civil Engineering, vol. 11, issue 6, ver. V,  pp. 67-72, December 2014.
[16]  Ansoft, “Antenna RF training guide,” ANSYS Inc. 2010.
[17]  ANSYS HFSS, “Materials characteristics table”.
[18]  G. J. Burke and A. J. Poggio, “Numerical electromagnetic code (NEC) method of moments,” Lawrence Livermore Laboratory, Interaction notes Livermore, California, July 1977.
[19] G. J. Burke and A. J. Poggio, “Numerical electromagnetic code (NEC) method of moments,” Lawrence Livermore Laboratory, Report UCID 18834, January 1981.
-----------------------------------------------------------------------------------------------------------------------------------------------------------




Popular Posts