Design and Simulation of Non-linear Adaptive Filters to Forecast Air Pollution

[Jagadeesh Hallur, Vijayalaxmi Jain, Neelam Hande, Vrushali Waghmare] Volume 3: Issue 3, Dec 2016, pp 36-40
-----------------------------------------------------------------------------------------------------

Abstract—Due to the modern living style, Industrialization and growth of vehicles on the road air pollution is becoming a major problem especially in Urban and Metropolitans cities. If correct & accurate prediction & precautions are taken for the air polluting components then it can be controlled to some extent. Here the previous values of air polluting components are used as knowledge base which is obtained based on  3 seasons i.e. (summer, winter, rainy). Using the Non-Linear Adaptive filtering and Artificial Neural Network (ANN) the prediction of particular day is made.

 

Index TermsArtificial Neural Network (ANN)
----------------------------------------------------------------------------------------------------------------------------------------------------------
 References

[1] Foxall, R.; Krcmar, I.; Cawley, G.; Dorling, S.; Mandic, D.P. (2001). “Not linear modeling of air pollution time-series”, icassp, Vol. 6, pp. 3505-3508, IEEE International Conference on Acoustics, Speech, and Signal Processing.
[2] Bard, D.; Laurent, O.; Havard, S.; Deguen, S.; Pedrono, G.; Filleul, L.; Segala, C.; Lefranc, A.; Schillinger, C.; Rivière, E. (2010). “Ambient air pollution, social inequalities and asthma exacerbation in Greater Strasbourg (France) metropolitan area: the PAISA study, Artificial Neural Networks to Forecast Air Pollution”, Chapter 15 of "Ai Pollution", Editor V. Villaniy, SCIYO Publisher, ISBN 978-953-307-143-5.
[3] “Environmental Research Group, King's College London”. (2010). Air Quality project
[4] Hass, H.; Jakobs, H.J. & Memmesheimer, M. (1995). “Analysis of a regional model (EURAD) near surface gas concentration predictions using observations from networks, Meteorol. Atmos”. Phys. Vol. 57, pp. 173–200.
[5] Pasero, E.; Mesin L. (2010). “Artificial Neural Networks to Forecast Air Pollution”, Chapter 10 of "Air Pollution", editor V. Villaniy, SCIYO Publisher, ISBN 978-953-307-143-5.
[6] Widrow, B.; winter, R.G. (1988), “Neural Nets for Adaptive Filtering and Adaptive Patter Recognition”. IEEE Computer Magazine, Vol. 21(3), pp. 25-39.
[7] World Health Organization (2006). “Air quality guidelines. Global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide”, ISBN 92 890 2192 6.
[8] Kocak, K.; Saylan, L.; Sen, O. (2000). “Nonlinear time series prediction of O3 concentration in Istanbul”. Atmospheric Environnement, Vol. 34, pp. 1267–1271.
[9] Karatzas, K.D.; Papadourakis, G.; Kyriakidis, I. (2008). “Understanding and forecasting atmospheric quality parameters with the aid of ANNs”. Proceedings of the IJCNN, Hong Kong, China, pp. 2580-2587, June 1-6.
[10]  De Smet, L.; Devoldere, K.; Vermoote, S. (2007). “Valuation of air pollution ecosystem damage, acid rain, ozone, nitrogen and biodiversity – final report”. Available online: http://ec.europa.eu/environment/air/pollutants/valuation/pdf/synthesis_report _final.pdf.
[11]  Koller, D. & Sahami, M. (1996). “Toward optimal feature selection”, Proceedings of 13th International Conference on Machine Learning (ICML), pp. 284-292, July 1996, Bari, Italy.
[12]  Marquardt, D (1963). “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”. SIAM Journal on Applied Mathematics 11: 431–441. doi:10.1137/0111030.
----------------------------------------------------------------------------------------------------------------------------


Popular Posts