A VEM–based mesh–adaptive strategy for potential problems

[Annamaria Mazzia, Flavio Sartoretto] Volume 6: Issue 1, March 2019, pp 30 - 39  

DOI: 10.26706/IJAEFEA.1.6.20190301

Abstract The Virtual Element Method (VEM) is an evolution of the mimetic finite difference method which overcomes many limitations affecting classic Finite Element Methods (FEM). VEM for 2D problems allows for exploiting meshes consisting of any polygonal elements.  No limitations on their internal angles are needed. Hanging nodes are easily treated. Notably, VEM is well apt to mesh–adaptive algorithms. In this paper we detail an implementation of mesh–adaptive VEM for potential problems.  We suggest a fresh, promising approach.  We show on suitable test problems that a gain in efficiency can be obtained, respect to uniform, fine discretizations.

Index terms - VEM,  Mesh  Adaptivity,  Poisson Problem.
[1] P. F. Antonietti, L. Beirão da Veiga, D. Mora, and M. Verani.  A stream virtual element for- mulation  of  the  stokes  problem  on  polygonal meshes.  SIAM Journal on Numerical Analysis, 52(1):386–404, 2014.

[2] P. F. Antonietti, L. Beirão da Veiga, S. Scacchi, and M. Verani.  A C1  virtual element method for the Cahn-Hilliard equation with polygonal meshes.  SIAM Journal on Numerical Analysis, 54(1):34–56, 2016.

[3] P.  F.  Antonietti,  M.  Bruggi,  S.  Scacchi,  and M. Verani. On the Virtual Element Method for topology optimization on polygonal meshes:  A numerical study.  Computers and Mathematics with Applications, 74(5):1091–1109, 2017.

[4] P.  F.  Antonietti,  S.  Giani,  and  P.  Houston. hp–Version Composite Discontinuous Galerkin Methods  for  elliptic  problems  on  complicated domains.  SIAM J. Sci. Comput., 35(3):A1417– A1439, 2013.

[5] P.  F.  Antonietti,   G.  Manzini,   and  M.  Ve- rani.  The fully nonconforming Virtual Element method for biharmonic problems. Mathematical Models & Methods in Applied Sciences,  28(2), 2018.

[6] P. F. Antonietti, L. Mascotto, and M. Verani. A multigrid algorithm for the p–version of the Virtual Element method.  ESAIM: Mathemati- cal Modelling and Numerical Analysis, 2018. In press.

[7] B. Ayuso de Dios, K. Lipnikov, and G. Manzini. The  nonconforming  virtual  element  method. ESAIM: Mathematical Modelling and Numerical Analysis, 50(3):879–904, 2016.

[8] F.    Bassi,      L.     Botti,     and    A.     Colombo. Agglomeration-based  physical  frame  DG  dis- cretizations: An attempt to be mesh free. Math. Models  Methods  Appl.  Sci.,  24(8):1495–1539, 2014.

[9] R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in fi- nite element methods. In A. Iserles, editor, Acta Numerica,  pages 1–102. Cambridge University Press, Cambridge, 2001.

[10] L.  Beirão  da  Veiga,  F.  Brezzi,  A.  Cangiani, G. Manzini, L. D. Marini, and A. Russo. Basic principles of virtual element methods.  Mathe- matical Models & Methods in Applied Sciences, 23:119–214, 2013.

[11] L.  Beirão  da  Veiga,   F.  Brezzi,   and  L.  D. Marini.   Virtual  elements  for  linear  elasticity problems.   SIAM Journal on Numerical Anal- ysis, 51(2):794–812, 2013.

[12] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo.   Mixed virtual element methods for general second order elliptic problems on polyg- onal meshes.  ESAIM: Mathematical Modelling and Numerical Analysis, 50(3):727–747, 2016.

[13] L. Beirão da Veiga, A. Chernov, L. Mascotto, and  A.  Russo.     Basic  principles  of  hp  virtual elements on quasiuniform meshes.   Math- ematical Models & Methods in Applied Sciences, 26(8):1567–1598, 2016.

[14] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. Arbitrary order nodal mimetic discretizations of elliptic problems on polygonal meshes.   SIAM Journal  on  Numerical  Analysis,   49(5):1737– 1760, 2011.

[15] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. The  Mimetic  Finite  Difference  Method,   vol- ume 11 of MS&A. Modeling,  Simulations and Applications. Springer, I edition, 2014.

[16] L. Beirão da Veiga, C. Lovadina, and D. Mora. A  virtual  element  method  for  elastic  and  in-elastic problems on polytope meshes. Computer Methods in Applied Mechanics and Engineering, 295:327–346, 2015.

[17] L. Beirão da Veiga and G. Manzini.  A virtual element method with arbitrary regularity. IMA Journal on Numerical Analysis, 34(2):782–799, 2014. DOI: 10.1093/imanum/drt018, (first pub- lished online 2013).

[18] L. Beirão da Veiga and G. Manzini.   Residual a posteriori error estimation for the virtual el- ement method for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analy- sis, 49:577–599, 2015.

[19] L. Beirão da Veiga, G. Manzini, and M. Putti. Post-processing of solution and flux for the nodal mimetic  finite  difference  method. Numerical Methods for PDEs, 31(1):336–363, 2015.

[20] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo.   The hitchhiker’s guide to the Vir- tual Element Method. Mathematical Models and Methods in Applied Sciences, 24(8):1541–1573, 2014.

[21] L. Beirão da Veiga, A. Chernov, L. Mascotto, and A. Russo.  Exponential convergence of the hp virtual element method in presence of cor- ner singularities.  Numerische Mathematik, 138, 2018.

[22] M. F. Benedetto, S. Berrone, S. Pieraccini, and S. Scialò. The virtual element method for dis- crete fracture network simulations.   Computer Methods in Applied Mechanics and Engineering, 280(0):135 – 156, 2014.

[23] S. Berrone, A. Borio, and G. Manzini.  SUPG stabilization for the nonconforming virtual el- ement  method  for  advection-diffusion-reaction equations.   Computer Methods in Applied Me- chanics and Engineering, 340:500–529, 2018.

[24] F. Brezzi, R. S. Falk, and L. D. Marini.   Ba- sic principles of mixed virtual element methods. ESAIM. Mathematical Modelling and Numerical Analysis, 48(4):1227–1240, 2014.

[25] F. Brezzi and L. D. Marini.   Virtual element methods for plate bending problems. Computer Methods in Applied Mechanics and Engineering, 253:455–462, 2013.

[26] A.  Cangiani,   Z.  Dong,   and  E.  Georgoulis. hp-version  space-time  discontinuous  Galerkin methods  for  parabolic  problems  on  prismatic meshes. SIAM Journal on Scientific Computing, 39(4):A1251–A1279, 2017.

[27] A.  Cangiani,  E.  Georgoulis,  and  P.  Houston. hp-version discontinuous Galerkin Methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci., 24(10):2009–2041, 2014.

[28] A. Cangiani, E. H. Georgoulis, T. Pryer, and O. J. Sutton.  A posteriori error estimates for the virtual element method. Numerische Math- ematik, pages 1–37, 2017.

[29] A. Cangiani, V. Gyrya, G. Manzini, and O. Sutton.     Chapter  14:   Virtual  element  methods for elliptic problems on polygonal meshes.   In K.  Hormann  and  N.  Sukumar,  editors,  Gen- eralized  Barycentric  Coordinates  in  Computer Graphics and Computational Mechanics, pages 1–20. CRC Press, Taylor & Francis Group, 2017.

[30] A.   Cangiani,   G.   Manzini,   A.   Russo,   and N. Sukumar. Hourglass stabilization of the vir- tual  element  method. International  Journal on  Numerical  Methods  in  Engineering,  102(3-4):404–436, 2015.

[31] A.  Cangiani,   G.  Manzini,   and  O.  Sutton. Conforming and nonconforming virtual element methods for elliptic problems.  IMA Journal on Numerical Analysis, 37:1317–1354, 2017. (online August 2016).

[32] C. Carstensen, M. Eigel, R. H. W. Hoppe, and C. Löbhard.  A review of unified a posteriori finite element error control. Numer. Math. Theor. Meth. Appl., pages 509–558, 2012.

[33] B.  Cockburn,  D.  A.  Di  Pietro,  and  A.  Ern. Bridging the Hybrid High-order and Hybridiz- able Discontinuous Galerkin Methods.  ESAIM Math.  Model.  Numer.  Anal.,   50(3):635–650, 2016.

[34] D. A. Di Pietro, J. Droniou, and G. Manzini. Discontinuous  skeletal  gradient  discretisation methods on polytopal meshes. Journal of Com- putational Physics, 355:397–425, 2018.

[35] D. A. Di Pietro, A. Ern, and S. Lemaire.  An arbitrary-order and compact-stencil discretiza- tion of diffusion on general meshes based on lo- cal reconstruction operators.  Comput. Methods Appl. Math., 14(4):461–472, 2014.

[36] W. Dörfler.   A convergent adaptive algorithm for poisson’s equation.  SIAM J. Numer. Anal., 33(3):1106–1124, June 1996.

[37] J. Droniou. Finite volume schemes for diffusion equations: Introduction to and review of modern methods. Mathematical Models and Methods in Applied Sciences, 24(08):1575–1619, 2014.

[38] J.  Droniou,   R.  Eymard,   T.  Gallouet,   and R. Herbin.  Gradient schemes:  a generic frame- work for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci., 23(13):2395– 2432, 2013.

[39] S. Funken, D. Praetorius, and P. Wissgott.  Ef- ficient implementation of adaptive P1-FEM in Matlab.     Computational  Methods  in  Applied Mathematics, 11(4), 2011.

[40] F.  Gardini  and  G.  Vacca.   Virtual  element method for second order elliptic eigenvalue prob- lems. IMA Journal on Numerical Analysis, 2017. Preprint, arXiv:1610.03675.

[41] T. Grätsch and K.-J. Bathe.  A posteriori error estimation techniques in practical finite element analysis. Computers and Structures, pages 235– 265, 2005.

[42] V. Gyrya, K. Lipnikov, and G. Manzini.   The arbitrary order mixed mimetic finite difference method  for  the  diffusion  equation. ESAIM: Mathematical Modelling and Numerical Analy- sis, 50(3):851–877, 2016.

[43] B.  B.  T.  Kee,  G.  R.  Liu,  G.  Y.  Zhang,  and C. Lu.  A residual based error estimator using radial basis functions. Finite Elem. Anal. Des., 44(9-10):631–645, June 2008.

[44] K.  Lipnikov  and  G.  Manzini. A  high-order mimetic  method  on  unstructured  polyhedral meshes for the diffusion equation.   Journal of Computational Physics, 272:360–385, 2014.

[45] K. Lipnikov, G. Manzini, J. D. Moulton, and M.  Shashkov.     The  mimetic  finite  difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient. Journal  of  Computational  Physics,  305:111  – 126, 2016.

[46] K.  Lipnikov,  G.  Manzini,  and  M.  Shashkov. Mimetic  finite  difference  method.   Journal  of Computational Physics, 257 – Part B:1163–1227, 2014. Review paper.

[47] G. Manzini, K. Lipnikov, J. D. Moulton, and M.  Shashkov.    Convergence  analysis  of  the mimetic  finite  difference  method  for  elliptic problems with staggered discretizations of dif- fusion coefficients. SIAM Journal on Numerical Analysis, 55(6):2956–2981, 2017.

[48] G. Manzini, A. Russo, and N. Sukumar.  New perspectives on polygonal and polyhedral finite element methods. Mathematical Models & Meth- ods in Applied Sciences, 24(8):1621–1663, 2014.

[49] R. H. Nochetto, K. G. Siebert, and A. Veeser. Theory of adaptive finite element methods: An introduction. In R. DeVore and A. Kunoth, ed- itors,  Multiscale,  Nonlinear  and  Adaptive  Ap- proximation: Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday, pages 409– 542. Springer Berlin Heidelberg, Berlin, Heidel- berg, 2009.

[50] S. Rjasanow and S. Weißer. Higher order BEM- based FEM on polygonal meshes. SIAM J. Nu- mer. Anal., 50(5):2357–2378, 2012.

[51] N.  Sukumar  and  A.  Tabarraei.  Conforming Polygonal Finite Elements. Internat. J. Numer. Methods Engrg., 61(12):2045–2066, 2004.

[52] A. Tabarraei and N. Sukumar.   Extended Fi- nite Element Method on polygonal and quadtree meshes.  Comput. Methods Appl. Mech. Engrg., 197(5):425–438, 2008.

[53] C.  Talischi,  G.  H.  Paulino,  A.  Pereira,  and I.  F.  M.  Menezes.     PolyMesher:   a  general- purpose mesh generator for polygonal elements written in Matlab.   Struct. Multidisc. Optim., 45(3):309–328, 2012.

[54] O.˘Certík, F. Gardini, G. Manzini, and G. Vacca. The virtual element method for eigenvalue prob- lems with potential terms on polytopic meshes. Applications   of   Mathematics,   63(3):333–365, 2018.

[55] G. Vacca.   An H1-conforming virtual element for  Darcy  and  Brinkman  equations. Mathematical Models & Methods in Applied Sciences, 28(1):159–194, 2018.


Popular Posts