Magnetic Refrigeration: The Modern Refrigeration Technique- A Review

Pranav Pachpande and S. A. Karve

International Journal of Analytical, Experimental and Finite Element Analysis

Volume 7: Issue 1, April 2020, pp  1 - 8 

Abstract This paper involves the information about type of newly refrigeration. The aim of this study is to give the working principle, operating cycle of the cooling due to the magnetic field. The aim behind the cooling effect is Magneto-Caloric effect MCE.  According to this effect when magnetic material like gadolinium is subjected to field developed due to the magnet, temperature of that material increases and when source to develop the magnetic field is removed it returns to its normal temperature. The cooling effect caused uses the magnetic effect in the various ways. Gadolinium is kept as it will pass through magnetic field. As it transfers through the magnetic field the gadolinium heats up as it enters the magneto-caloric effect. There is need to circulate the cooled water to remove the heat out of the metal when it is in magnetic field. As the material lives the source of field, the materials decreases its temperature down its original temperature as the result of magnetic effect. Then this cold gadolinium is used to remove the heat from the refrigerator coils.

Index terms - Magnetic refrigeration, regenerator, magnetic field, gadolinium

[1] C. Zimm, J. Auringer, A. Boeder, J. Chell, S. Russek, and A. Sternberg, ‘Design and initial performance of a magnetic refrigerator with a rotating permanent magnet’, Proc.Int. Conf. Magn. Refrig. Room Temp. Portoroz, Slov., no. April, pp. 341–347, 2007.

[2] V. K. Pecharsky, J. Cui, and D. D. Johnson, ‘(Magneto)caloric refrigeration: is there light at the end of the tunnel?’, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 374, no. 2074, p. 20150305, Aug. 2016.

[3] C. Aprea, A. Greco, A. Maiorino, and C. Masselli, ‘Magnetic refrigeration: An eco-friendly technology for the refrigeration at room temperature’, in Journal of Physics: Conference Series, 2015, vol. 655, no. 1

[4] A. Kitanovski and P. W. Egolf, ‘Thermodynamics of magnetic refrigeration’, International Journal of Refrigeration, vol. 29, no. 1. Elsevier, pp. 3–21, Jan. 01, 2006.

[5] Y. Lei, K. Liu, L. Hou, L. Ding, Y. Li, and L. Liu, ‘Small chaperons and autophagy protected neurons from necrotic cell death’, Sci. Rep., vol. 7, no. 1, pp. 1–13, Dec. 2017.

[6]  J. Liang, C. D. Christiansen, K. Engelbrecht, K. K. Nielsen, R. Bjørk, and C. R. H. Bahl, ‘Characterization of Freeze-Cast Micro-Channel Monoliths as Active and Passive Regenerators’, Front. Energy Res., vol. 8, no. April, 2020.

[7] B. Monfared and B. Palm, ‘Material requirements for magnetic refrigeration applications’, Int. J. Refrig., vol. 96, pp. 25–37, Dec. 2018.

[8] K. K. Nielsen, K. Engelbrecht, and C. R. H. Bahl, ‘The influence of flow maldistribution on the performance of inhomogeneous parallel plate heat exchangers’, Int. J. Heat Mass Transf., vol. 60, no. 1, pp. 432–439, May 2013.

[9] R. Kajimoto et al., ‘Hole-concentration-induced transformation of the magnetic and orbital structures in Nd1-xSrxMnO3’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 60, no. 13, pp. 9506–9517, Oct. 1999.

[10] H. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, H. Kuwahara, and Y. Tokura, ‘Magnetic ordering and relation to the metal-insulator transition in Pr1 − xSrxMnO3 and Nd1 − xSrxMnO3 with x ∼ 1/2’, Phys. Rev. Lett., vol. 78, no. 22, pp. 4253–4256, Jun. 1997.

[11] C. Ritter and R. Mahendiran, ‘Direct evidence of phase segregation and magnetic-field-induced structural transition in by neutron diffraction’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 61, no. 14, pp. R9229–R9232, Apr. 2000.

[12] J. P. Joshi, A. K. Sood, S. V. Bhat, S. Parashar, A. R. Raju, and C. N. R. Rao, ‘An electron paramagnetic resonance study of phase segregation in Nd 0.5Sr0.5MnO3’, J. Magn. Magn. Mater., vol. 279, no. 1, pp. 91–102, Aug. 2004.

[13] V. T. Dovgii et al., ‘Anomalous magnetic susceptibility in Nd0.5Sr 0.5MnO3 manganite single crystals’, Tech. Phys. Lett., vol. 34, no. 12, pp. 1044–1046, Dec. 2008.

[14] J. Geck et al., ‘Anisotropic CE-type orbital correlations in the ferromagnetic metallic phase of (formula presented)’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 66, no. 18, pp. 1–8, Nov. 2002,

[15] I. A. Abdel-Latif and M. R. Ahmed, ‘Use of Magnetocaloric Material for Magnetic Refrigeration System: A Review’, Mater. Sci. Res. India, vol. 16, no. 3, pp. 209–224, 2019.

[16] S. E. Naleway, J. R. A. Taylor, M. M. Porter, M. A. Meyers, and J. McKittrick, ‘Structure and mechanical properties of selected protective systems in marine organisms’, Materials Science and Engineering C, vol. 59. Elsevier Ltd, pp. 1143–1167, Feb. 01, 2016.

[17] M. Kaviany, ‘Principles of Heat Transfer in Porous Media’, Mech. Eng. Ser., vol. 53, no. 9, p. 726, 1995.

[18] C. Zimm et al., ‘Description and Performance of a Near-Room Temperature Magnetic Refrigerator’, in Advances in Cryogenic Engineering, Springer US, 1998, pp. 1759–1766.

[19] L. A. Tagliafico, F. Scarpa, F. Canepa, and S. Cirafici, ‘Performance analysis of a room temperature rotary magnetic refrigerator for two different gadolinium compounds’, Int. J. Refrig., vol. 29, no. 8, pp. 1307–1317, 2006.

[20] B. R. Dorin, J. Avsec, and A. Plesca, ‘The Efficiency Of Magnetic Refrigeration And A Comparison With Compressor Refrigeration Systems’, 2018. Accessed: May 26, 2020. 
[Online]. Available:

[21] M. Almanza, A. Kedous-Lebouc, J. P. Yonnet, U. Legait, and J. Roudaut, ‘Magnetic refrigeration: Recent developments and alternative configurations’, EPJ Appl. Phys., vol. 71, no. 1, 2015.

[22] A. P. Garole, A. B. More, and G. P. Jarad, ‘“Analysis of Factors Influencing Time Overrun in Build Operate Transfer Infrastructure Projects: A Case Study on BOT Road Project in Maharashtra”’, Int. Res. J. Eng. Technol., 2016, Accessed: May 26, 2020. 
[Online]. Available:

[23] V. Franco, J. S. Blázquez, B. Ingale, and A. Conde, ‘The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models’, Annu. Rev. Mater. Res., vol. 42, no. 1, pp. 305–342, Aug. 2012.

[24] E. Brück, ‘Developments in magnetocaloric refrigeration’, Journal of Physics D: Applied Physics, vol. 38, no. 23. 2005.

[25] A. Taubel et al., ‘A Comparative Study on the Magnetocaloric Properties of Ni-Mn-X(-Co) Heusler Alloys’, Phys. status solidi, vol. 255, no. 2, p. 1700331, Feb. 2018.

[26] J. D. Moore et al., ‘Metamagnetism Seeded by Nanostructural Features of Single-Crystalline Gd 5 Si 2 Ge 2’, Adv. Mater., vol. 21, no. 37, pp. 3780–3783, Oct. 2009.

[27] V. K. Pecharsky and K. A. Gschneidner, ‘Giant magnetocaloric effect in Gd5 (Si2 Ge2)’, Phys. Rev. Lett., vol. 78, no. 23, pp. 4494–4497, Jun. 1997.

[28] A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, ‘Itinerant-electron metamagnetic transition and large magnetocaloric effects in (formula presented) compounds and their hydrides’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 67, no. 10, p. 12, Mar. 2003.

[29] J. Lyubina, K. Nenkov, L. Schultz, and O. Gutfleisch, ‘Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx’, Phys. Rev. Lett., vol. 101, no. 17, p. 177203, Oct. 2008.

[30] H. Wada, K. Taniguchi, and Y. Tanabe, ‘Extremely Large Magnetic Entropy Change of MnAs 1−x Sb x near Room Temperature’, 2002.

[31] O. Tegus, E. Brück, K. H. J. Buschow, and F. R. De Boer, ‘Transition-metal-based magnetic refrigerants for room-temperature applications’, Nature, vol. 415, no. 6868, pp. 150–152, Jan. 2002.
[32] Y. Sutou et al., ‘Magnetic and martensitic transformations of NiMnX(X=In, Sn, Sb) ferromagnetic shape memory alloys’, in Applied Physics Letters, Nov. 2004, vol. 85, no. 19, pp. 4358–4360.

[33] J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gutfleisch, ‘Giant magnetocaloric effect driven by structural transitions’, Nat. Mater., vol. 11, no. 7, pp. 620–626, May 2012.

[34] A. Planes, L. Mãosa, and M. Acet, ‘Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys’, J. Phys. Condens. Matter, vol. 21, no. 23, 2009.

[35] P. Devi et al., ‘Adaptive modulation in Ni2Mn1.4In0.6 magnetic shape memory Heusler alloy’, Phys. Rev. B, vol. 97, no. 22, Nov. 2016.

[36] M. G. Zavareh et al., ‘Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni$_{50}$Mn$_{35}$In$_{15}$’, Appl. Phys. Lett., vol. 106, no. 7, Jan. 2015.

[37] T. Gottschall, K. P. Skokov, B. Frincu, and O. Gutfleisch, ‘Large reversible magnetocaloric effect in Ni-Mn-In-Co’, Appl. Phys. Lett., vol. 106, no. 2, p. 021901, Jan. 2015.

[38] L. Caron et al., ‘Effect of Pt substitution on the magnetocrystalline anisotropy of Ni2MnGa: A competition between chemistry and elasticity’, Phys. Rev. B, vol. 96, no. 5, p. 054105, Aug. 2017.

[39] S. R. Barman et al., ‘Theoretical prediction and experimental study of a ferromagnetic shape memory alloy: Ga2MnNi’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 78, no. 13, p. 134406, Oct. 2008.

[40] V. V. Khovaylo et al., ‘Peculiarities of the magnetocaloric properties in Ni-Mn-Sn ferromagnetic shape memory alloys’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 81, no. 21, p. 214406, Jun. 2010.

[41] V. V. Khovaylo et al., ‘Magnetic properties of Ni50 Mn34.8 In15.2 probed by Mössbauer spectroscopy’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 80, no. 14, p. 144409, Oct. 2009.

[42] T. Gottschall et al., ‘Dynamical Effects of the Martensitic Transition in Magnetocaloric Heusler Alloys from Direct Δtad Measurements under Different Magnetic-Field-Sweep Rates’, Phys. Rev. Appl., vol. 5, no. 2, p. 024013, Feb. 2016.

Popular Posts