A Review on Electro-spun Nanofibers for Air Pollution Control

[Nand Jee Kanu and Subodh Mahadev Kale] Volume 7: Issue 1, April 2020, pp  9 - 18

DOI: 10.26706/IJAEFEA.1.7.20200306

Abstract These days air pollution has emerge as greater severe and commenced to have a dramatic impact at the fitness of people in many big towns. usually, out of doors personal protection, together with commercial masks cannot successfully save you the inhalation of many pollution. specific remember (PM) pollutants are specially a critical risk to human fitness. here we introduce a brand-new green air filtration materials and methodologies that can be used for outside in addition to in Indoor air filtration. Sub-microfibers and nanofibers membranes have an excessive surface to extent ratio which makes them suitable for diverse programs such as environmental remediation and filtration, strength production and garage, digital optical sensors, tissue engineering and drug shipping. the fast file affords an outline of cutting-edge situation of nanofibers produced using electro-spinning approach and the one-of-a-kind polymers used for the manufacturing of nanofibers and the improvement procedures.

Index terms - polyacrylonitrile (PAN):TiO2, polyacrylonitrile-Co-polyacrylate (PAN-Co-PMA):TiO2, ZIF-67@PAN filters

[1]    D. Ruan, L. Qin, R. Chen, and G. Xu,"Transparent PAN:TiO2 and PAN-coPMA:TiO2 nanofiber composite membranes with High Efficiency in Particulate Matter pollutants filtration", Nanoscale Research Letters, vol 15, pp. 1-8,January 2020.
[2]    P.M. Mannucci and M. Franchini,"Health effects of ambient air pollution in developing countries", International Journal of Environmental Research and Public Health., vol. 14, pp. 1-8, September 2017.
[3]    A. Bałazy, M. Toivola, and A. Adhikari, "Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks", Am J Infect Control, vol. 34, pp. 51-57, March 2006.
[4]    M. Loeb , N. Dafoe, J. Mahony,M.John, A.Sarabia, V.Glavin, R.Webby, M.Smieja, D.J. Earn, S. Chong, A. Webb and S.D. Walter, “Surgical mask vs N95 respirator for preventing influenza among health care workers: a randomized trial",JAMA, vol. 302, pp. 1865-1871, January 2009.
[5]    K.M. Sim, H.S. Park, G.N. Bae, and J.H. Jung,"Antimicrobial nanoparticle coated electrostatic air filter with high filtration efficiency and low pressure drop",Sci Total Environ, vol. 533, pp. 266–274, July 2015.
[6]    N. Wang, Y. Si, Wang, G. Sun, M. El-Newehy, S.S. Al-DeyabandB. Ding,"Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high performance air filtration", Separation and Purification Technology, vol. 126, pp. 44–51. April 2014.
[7]    W.W.F. Leung, C.W.Y. Hau and H.F. Choy, "Microfiber-nanofiber composite filter for high-efficiency and low pressure drop under nano-aerosol loading", Separation and Purification Technology, vol. 206, pp. 26-38,  May2018.
[8]    R. Chen, Y. Wan and N. Si, et al,"Bubble rupture in Bubble electrospinning",Thermal Science, vol. 19, pp. 1141-1149, January 2015.
[9]    D. Li,Y. Xia, "Electrospinning of nanofibers: reinventing the wheel", Advanced Materials,  vol. 16, pp. 1151 – 1170. July 2004 .
[10]  R.X. Chen, Y. L and J.H. He,"Mini-review on Bubbfil spinning process for mass-production of nanofibers”, Matéria (Rio de Janeiro), vol. 19, pp. 325-343, October 2014.
[11]  D. H. Reneker,"Bending instability of electrically charged liquid jets of polymer solutions in electrospinning", Journal of Applied Physics, vol. 87 pp. 4531-4547, May 2000.
[12]  J. Hromadka,S. Korposh, M.C. Partridge, S.W. James, F.Davis,D. Crump and R.P. Tatam,"Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring”, Sensors and Actuators B: Chemical, vol. 244, pp. 217–225, June 2017.
[13]  C.Liu, P.C. Hsu, H.W. Lee,M. Ye, G.Y. Zheng, N.Liu, W..Li and Y. Cui, "Transparent air filter for high-efficiency PM2.5 capture",Nature Communications, vol. 6, pp. 6205–6214, February 2015.
[14]  X. Liu, K.Gan, H. Liu, X. Song, T. Chen andC.Liu, "Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering", Dental Mater vol. 33, pp. 348–360, September 2017.
[15]  B. Grabas, "An evaluation of the use of laser-vibration melting to increase the surface roughness of metalobjects",Archives of Metallurgy and Mateials, vol. 60, pp. 33–39, March 2015.
[16]  Ü. Özgür, Y.I. Alivov,C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin,S. Cho and H. Morkoç,"A comprehensive review of ZnO materials and devices" Journal of Applied Physics, vol. 98, pp. 1–11.August 2005.
[17]  G. Williams, B. Seger and P.V. Kamat,"TiO2-graphene nanocomposites. UV assisted photocatalytic reduction of graphene oxide", ACS Nano vol. 2, pp. 1487– 1491, August 2008.
[18]  D. Chen, L. Wei, L. Meng, D. Wang , Y. Chen, Y.Tian, S. Yan, L. Mei and J.  Jiao,"High-Performance Self-Powered UV Detector Based on SnO2-TiO2 Nanomace Arrays", Nanoscale Research Letters vol. 13,  pp. 1–7, April 2018.
[19]  R. Zhang, J. Jing, J. Tao, S.C. Hsu, G. Wang, J. Cao,C.S.L. Lee,L. Zhu, Z.Chen, Y.Zhao and Z. Shen,"Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective",Atmospheric Chemistry and Physics, vol. 13, pp. 7053–7074, July 2013.
[20]  H. Wang, Y. Zhuang, Y. Wang, Y. Sun, H.Yuan, G. Zhuang andZ. Hao,"Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China", Journal of Environmental Sciences, vol. 20, pp. 1323–1327, April 2008.
[21]  X. Han andL.P. Naeher,"A review of traffic-related air pollution exposure assessment studies in the developing world", Environment International, vol. 32, pp. 106–120, January 2006.
[22]  M. M. Maricq, "Chemical characterization of particulate emissions from diesel engines: a review",Journal of Aerosol Science, vol. 38, pp. 1079–1118, November 2007.
[23]  J. C. Chow,"Health effects of fine particulate air pollution: lines that connect",Journal of the Air & Waste Management Association, vol. 56, pp. 707–708, February 2012.
[24]  M. Natalie,"Aerosol indirect effect on biogeochemical cycles and climate", Science, vol. 334, pp. 794–796, November 2011.
[25]  D.E.Horton, C.B.Skinner, D.Singh and N.S.Diffenbaugh “Occurrence and persistence of future atmospheric stagnation events.” Nature climate change, vol. 4, pp. 698–703, August 2014.
[26]  R.Betha, S.N.Behera and R.Balasubramanian “Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk.” Environmental Science & Technology, vol. 48, pp. 4327–4335, March 2014.
[27]  R. D. Brook, S. Rajagopalan, Pope C. A. J. R. Brook, A. Bhatnagar, A, V, Diez-Roux, F, Holguin, Y, Hong, R. V. Luepker, M. A. Mittleman, A. Peters, D. Siscovick, Jr S. C. Smith, L. Whitsel and J. D. Kaufman, “A Metabolism, Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association.”National Library of Medicine, vol. 121, pp. 2331–2378, May 2010.
[28]  S. C. Anenberg, L. W. Horowitz, D. Q. Tong and J. J. West, “An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling.”Environmental health perspectives, vol.  118, pp. 1189–1195 Septemper 2010.
[29]  K. Timonen, E. Vanninen, J. de Hartog, A. Ibald-Mulli, A. Brunekreef, D. R. Gold, J. Heinrich, G. Hoek, T. Lanki, A. Peters, T. Tarkiainen, P. Tiittanen, W. Kreylingandand J.  Pekkanen, “Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: the ULTRA study.”Journal of exposure science & environmental epidemiology, vol. 16, pp. 332–341, October 2006.
[30]  S. Wu, F. Deng, H. Wei, J. Huang, X. Wang, Y. Hao, C. Zheng, Y. Qin, H. Lv, M. Shima andX. Guo,“Association of cardiopulmonary health effects with source appointed ambient fine particulate in Beijing, China: a combined analysis from the Healthy Volunteer Natural Relocation (HVNR) study.” Environmental science & technology, vol. 48, pp. 3438–3448, February 2014.
[31]  R.Zhang, C.Liu, P.C.Hsu, C.Zhang, N.Liu, J.Zhang, H.R. Lee, Y.Lu, Y.Qiu, S.Chu and Y.Cui “Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources.”Nano letters, vol. 16, pp. 3642-3649, May 2016.
[32]  J.Xu, C.Liu, P.C.Hsu, K.Liu, R.Zhang, Y.Liu and Y.Cui “Roll-to-roll transfer of electro spun nanofiber film for high-efficiency transparent air filter.” Nano letters, vol. 16, pp. 1270–127, January 2016.
[33]  Y.Bian,R. Wang,S. Wang ,C. Yao and W. Ren “Metal-Organic Framework-Based Nanofiber Filters for Effective Indoor Air Quality Control”, Journal of Materials Chemistry A, vol. 6, pp. 15807-15814, July 2018.
[34]  C. A. Pope III, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski and G. D. Thurston, J. Am. “Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution”JAMA, vol. 287, pp. 1132–1141, March 2002.
[35]  F. Dominici, R. D. Peng, M. L. Bell, A. Mcdermott, S. L. Zeger and J. M. Samet, “Fine Particulate Air Pollution and Hospital Admission for Cardiovascular and Respiratory Diseases.”JAMA, vol. 295, pp. 1127–1134, January 2015.
[36]  J. Lelieveld, J. S. Evans, M. Fnais, D. Giannadaki and A. Pozzer, Nature, “The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale”Nature, vol. 525, pp. 367–371, September 2015.
[37]  C. Chen and B. Zhao, “Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor,”Atmospheric Environment,vol. 45, pp.  275–288,January 2011.
[38]  C. Chen, B. Zhao and C. J. Weschler, “Indoor Exposure to 'Outdoor PM₁₀": Assessing Its Influence on the Relationship Between PM₁₀ and Short-term Mortality in US Cities,” Epidemiology, vol. 23, pp. 870–878, November 2012.
[39]  N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V Behar, S. C. Hern and W. H. Engelmann, “The National human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants,” Journal of Exposure Analysis and Environmental Epidemiology, vol. 11, pp. 231–252,June 2001.
[40]  L. Hui, H.Jianying, M.Jiajun, C. Zhong and C.Guoqiang“Transparent antibacterial nanofiber air filters with highly efficient moisture resistance for sustainable particulate matter capture”, Science, vol. 19, pp. 214–223 September 2019.
[41]  Y.Chen, S.Zhang, S.Cao, S.Li, F.Chen, S.Yuan, C.Xu, J.Zhou, X.Feng, and X.Ma, “Roll-to-roll production of metal-organic framework coatings for particulate matter removal.”Advanced Materials, vol. 29, pp. 1-6, January 2017.
[42]  N.Bhattarai, D.Edmondson, O.Veiseh, F.A.Matsen, and M.Zhang, “Electro spun chitosan-based nanofibers and their cellular compatibility.” Biomaterials, vol. 26,pp. 6176– 6184, November 2005.
[43]  W.-R. Huang, Z.He, J.-L.Wang, J.-W.Liu, and S.-H.Yu, “Mass production of nanowirenylon flexible transparent smart windows for PM2.5” capture”, iScience, vol. 12, pp. 333–341, February 2019.
[44]  R.Huang, Y.Zhang, C.Bozzetti, K.Ho, J.Cao, Y.Han, K.Daellenbach, J.Slowik, S.Platt, and F.Canonaco, “High secondary aerosol contribution to particulate pollution during haze events in China.”Nature, vol. 514, pp. 218–222, September 2014.
[45]  D.E.Horton, C.B.Skinner, D.Singh, and N.S.Diffenbaugh, “Occurrence and persistence of future atmospheric stagnation events.”Natural Climatic Changes, vol. 4, pp.  698-703, June 2014.
[46]  G.Q. Gu, C.B.Han, J.J.Tian, T.Jiang, C.He, C.X.Lu, Y.Bai,  J.H.Nie,Z.Li and Z.L.Wang, “Tribo-electric nano-generator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter.”Nano Research, vol. 11, pp. 4090–4101, February 2018.
[47]  J.Lelieveld, J.S.Evans, M.Fnais, D.Giannadaki, and A.Pozzer, “The contribution of outdoor air pollution sources to premature mortality on a global scale.” Nature,vol. 525, pp. 367-371, September 2015.
[48]  B.Khalid, X.Bai, H.Wei, Y.Huang, H.Wu, and Y.Cui,  “Direct blow-spinning of nanofibers on a window screen for highly efficient PM2.5 removal”, Nano Letters, vol. 17, pp. 1140–1148, December 2016.
[49]  W.Jung, J.S.Lee, S. Han, S.H.Ko, T.Kim, and Y.H.Kim, “An efficient reduced grapheneoxide filter for PM 2.5 removal”, Journal of Materials Chemistry A, vol. 6, pp. 16975–16982, August 2018.
[50]  S.Jeong, H.Cho, S.Han, P.Won, H.Lee, S.Hong, J.Yeo, J.Kwon, and S.H.Ko, “High efficiency, transparent, reusable, and active PM2. 5 filters by hierarchical Ag nanowire percolation network.” Nano Letters, vol. 17, pp. 4339–4346, June 2017.
[51]  R. Zhang, C.Liu, P-C.Hsu, C.Zhang, N.Liu, J.Zhang, H.R.Lee, Y.Lu, Y.Qiu, and S.Chu, “Nanofiber air filters with high temperature stability for efficient PM2. 5 removal from the pollution sources.” Nano Letters, vol. 16, pp. 3642– 3649, May 2016.

[52] X. Zhao, Y. Li, T. Hua, P. Jiang, X.Yin, J.Yu, and B.Ding, “Low-resistance dualpurposeair filter releasing negative ions and effectively capturing PM2.5”, ACS Appied Material &Interfaces,vol. 9, pp. 12054–12063, March 2017.


Read More »

Magnetic Refrigeration: The Modern Refrigeration Technique- A Review

[Pranav Pachpande and S. A. Karve] Volume 7: Issue 1, April 2020, pp  1 - 8

DOI: 10.26706/IJAEFEA.1.7.20200303

Abstract This paper involves the information about type of newly refrigeration. The aim of this study is to give the working principle, operating cycle of the cooling due to the magnetic field. The aim behind the cooling effect is Magneto-Caloric effect MCE.  According to this effect when magnetic material like gadolinium is subjected to field developed due to the magnet, temperature of that material increases and when source to develop the magnetic field is removed it returns to its normal temperature. The cooling effect caused uses the magnetic effect in the various ways. Gadolinium is kept as it will pass through magnetic field. As it transfers through the magnetic field the gadolinium heats up as it enters the magneto-caloric effect. There is need to circulate the cooled water to remove the heat out of the metal when it is in magnetic field. As the material lives the source of field, the materials decreases its temperature down its original temperature as the result of magnetic effect. Then this cold gadolinium is used to remove the heat from the refrigerator coils.


[1]   C. Zimm, J. Auringer, A. Boeder, J. Chell, S. Russek, and A. Sternberg, ‘Design and initial performance of a magnetic refrigerator with a rotating permanent magnet’, Proc.Int. Conf. Magn. Refrig. Room Temp. Portoroz, Slov., no. April, pp. 341–347, 2007, doi: 10.4065/mcp.2010.0817.
[2]   V. K. Pecharsky, J. Cui, and D. D. Johnson, ‘(Magneto)caloric refrigeration: is there light at the end of the tunnel?’, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 374, no. 2074, p. 20150305, Aug. 2016, doi: 10.1098/rsta.2015.0305.
[3]   C. Aprea, A. Greco, A. Maiorino, and C. Masselli, ‘Magnetic refrigeration: An eco-friendly technology for the refrigeration at room temperature’, in Journal of Physics: Conference Series, 2015, vol. 655, no. 1, doi: 10.1088/1742-6596/655/1/012026.
[4]   A. Kitanovski and P. W. Egolf, ‘Thermodynamics of magnetic refrigeration’, International Journal of Refrigeration, vol. 29, no. 1. Elsevier, pp. 3–21, Jan. 01, 2006, doi: 10.1016/j.ijrefrig.2005.04.007.
[5]   Y. Lei, K. Liu, L. Hou, L. Ding, Y. Li, and L. Liu, ‘Small chaperons and autophagy protected neurons from necrotic cell death’, Sci. Rep., vol. 7, no. 1, pp. 1–13, Dec. 2017, doi: 10.1038/s41598-017-05995-6.
[6]   J. Liang, C. D. Christiansen, K. Engelbrecht, K. K. Nielsen, R. Bjørk, and C. R. H. Bahl, ‘Characterization of Freeze-Cast Micro-Channel Monoliths as Active and Passive Regenerators’, Front. Energy Res., vol. 8, no. April, 2020, doi: 10.3389/fenrg.2020.00054.
[7]   B. Monfared and B. Palm, ‘Material requirements for magnetic refrigeration applications’, Int. J. Refrig., vol. 96, pp. 25–37, Dec. 2018, doi: 10.1016/j.ijrefrig.2018.08.012.
[8]   K. K. Nielsen, K. Engelbrecht, and C. R. H. Bahl, ‘The influence of flow maldistribution on the performance of inhomogeneous parallel plate heat exchangers’, Int. J. Heat Mass Transf., vol. 60, no. 1, pp. 432–439, May 2013, doi: 10.1016/j.ijheatmasstransfer.2013.01.018.
[9]   R. Kajimoto et al., ‘Hole-concentration-induced transformation of the magnetic and orbital structures in Nd1-xSrxMnO3’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 60, no. 13, pp. 9506–9517, Oct. 1999, doi: 10.1103/PhysRevB.60.9506.
[10] H. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, H. Kuwahara, and Y. Tokura, ‘Magnetic ordering and relation to the metal-insulator transition in Pr1 − xSrxMnO3 and Nd1 − xSrxMnO3 with x ∼ 1/2’, Phys. Rev. Lett., vol. 78, no. 22, pp. 4253–4256, Jun. 1997, doi: 10.1103/PhysRevLett.78.4253.
[11] C. Ritter and R. Mahendiran, ‘Direct evidence of phase segregation and magnetic-field-induced structural transition in by neutron diffraction’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 61, no. 14, pp. R9229–R9232, Apr. 2000, doi: 10.1103/PhysRevB.61.R9229.
[12] J. P. Joshi, A. K. Sood, S. V. Bhat, S. Parashar, A. R. Raju, and C. N. R. Rao, ‘An electron paramagnetic resonance study of phase segregation in Nd 0.5Sr0.5MnO3’, J. Magn. Magn. Mater., vol. 279, no. 1, pp. 91–102, Aug. 2004, doi: 10.1016/j.jmmm.2004.01.072.
[13] V. T. Dovgii et al., ‘Anomalous magnetic susceptibility in Nd0.5Sr 0.5MnO3 manganite single crystals’, Tech. Phys. Lett., vol. 34, no. 12, pp. 1044–1046, Dec. 2008, doi: 10.1134/S106378500812016X.
[14] J. Geck et al., ‘Anisotropic CE-type orbital correlations in the ferromagnetic metallic phase of (formula presented)’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 66, no. 18, pp. 1–8, Nov. 2002, doi: 10.1103/PhysRevB.66.184407.
[15] I. A. Abdel-Latif and M. R. Ahmed, ‘Use of Magnetocaloric Material for Magnetic Refrigeration System: A Review’, Mater. Sci. Res. India, vol. 16, no. 3, pp. 209–224, 2019, doi: 10.13005/msri/160303.
[16] S. E. Naleway, J. R. A. Taylor, M. M. Porter, M. A. Meyers, and J. McKittrick, ‘Structure and mechanical properties of selected protective systems in marine organisms’, Materials Science and Engineering C, vol. 59. Elsevier Ltd, pp. 1143–1167, Feb. 01, 2016, doi: 10.1016/j.msec.2015.10.033.
[17] M. Kaviany, ‘Principles of Heat Transfer in Porous Media’, Mech. Eng. Ser., vol. 53, no. 9, p. 726, 1995, doi: 10.1007/978-1-4612-4254-3.
[18] C. Zimm et al., ‘Description and Performance of a Near-Room Temperature Magnetic Refrigerator’, in Advances in Cryogenic Engineering, Springer US, 1998, pp. 1759–1766.
[19] L. A. Tagliafico, F. Scarpa, F. Canepa, and S. Cirafici, ‘Performance analysis of a room temperature rotary magnetic refrigerator for two different gadolinium compounds’, Int. J. Refrig., vol. 29, no. 8, pp. 1307–1317, 2006, doi: 10.1016/j.ijrefrig.2006.07.017.
[20] B. R. Dorin, J. Avsec, and A. Plesca, ‘The Efficiency Of Magnetic Refrigeration And A Comparison With Compressor Refrigeration Systems’, 2018. Accessed: May 26, 2020. [Online]. Available: www.fe.um.si/en/jet.html.
[21] M. Almanza, A. Kedous-Lebouc, J. P. Yonnet, U. Legait, and J. Roudaut, ‘Magnetic refrigeration: Recent developments and alternative configurations’, EPJ Appl. Phys., vol. 71, no. 1, 2015, doi: 10.1051/epjap/2015150065.
[22] A. P. Garole, A. B. More, and G. P. Jarad, ‘“Analysis of Factors Influencing Time Overrun in Build Operate Transfer Infrastructure Projects: A Case Study on BOT Road Project in Maharashtra”’, Int. Res. J. Eng. Technol., 2016, Accessed: May 26, 2020. [Online]. Available: www.irjet.net.
[23] V. Franco, J. S. Blázquez, B. Ingale, and A. Conde, ‘The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models’, Annu. Rev. Mater. Res., vol. 42, no. 1, pp. 305–342, Aug. 2012, doi: 10.1146/annurev-matsci-062910-100356.
[24] E. Brück, ‘Developments in magnetocaloric refrigeration’, Journal of Physics D: Applied Physics, vol. 38, no. 23. 2005, doi: 10.1088/0022-3727/38/23/R01.
[25] A. Taubel et al., ‘A Comparative Study on the Magnetocaloric Properties of Ni-Mn-X(-Co) Heusler Alloys’, Phys. status solidi, vol. 255, no. 2, p. 1700331, Feb. 2018, doi: 10.1002/pssb.201700331.
[26] J. D. Moore et al., ‘Metamagnetism Seeded by Nanostructural Features of Single-Crystalline Gd 5 Si 2 Ge 2’, Adv. Mater., vol. 21, no. 37, pp. 3780–3783, Oct. 2009, doi: 10.1002/adma.200900093.
[27] V. K. Pecharsky and K. A. Gschneidner, ‘Giant magnetocaloric effect in Gd5 (Si2 Ge2)’, Phys. Rev. Lett., vol. 78, no. 23, pp. 4494–4497, Jun. 1997, doi: 10.1103/PhysRevLett.78.4494.
[28] A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, ‘Itinerant-electron metamagnetic transition and large magnetocaloric effects in (formula presented) compounds and their hydrides’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 67, no. 10, p. 12, Mar. 2003, doi: 10.1103/PhysRevB.67.104416.
[29] J. Lyubina, K. Nenkov, L. Schultz, and O. Gutfleisch, ‘Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx’, Phys. Rev. Lett., vol. 101, no. 17, p. 177203, Oct. 2008, doi: 10.1103/PhysRevLett.101.177203.
[30] H. Wada, K. Taniguchi, and Y. Tanabe, ‘Extremely Large Magnetic Entropy Change of MnAs 1−x Sb x near Room Temperature’, 2002.
[31] O. Tegus, E. Brück, K. H. J. Buschow, and F. R. De Boer, ‘Transition-metal-based magnetic refrigerants for room-temperature applications’, Nature, vol. 415, no. 6868, pp. 150–152, Jan. 2002, doi: 10.1038/415150a.
[32] Y. Sutou et al., ‘Magnetic and martensitic transformations of NiMnX(X=In, Sn, Sb) ferromagnetic shape memory alloys’, in Applied Physics Letters, Nov. 2004, vol. 85, no. 19, pp. 4358–4360, doi: 10.1063/1.1808879.
[33] J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gutfleisch, ‘Giant magnetocaloric effect driven by structural transitions’, Nat. Mater., vol. 11, no. 7, pp. 620–626, May 2012, doi: 10.1038/nmat3334.
[34] A. Planes, L. Mãosa, and M. Acet, ‘Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys’, J. Phys. Condens. Matter, vol. 21, no. 23, 2009, doi: 10.1088/0953-8984/21/23/233201.
[35] P. Devi et al., ‘Adaptive modulation in Ni2Mn1.4In0.6 magnetic shape memory Heusler alloy’, Phys. Rev. B, vol. 97, no. 22, Nov. 2016, doi: 10.1103/PhysRevB.97.224102.
[36] M. G. Zavareh et al., ‘Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni$_{50}$Mn$_{35}$In$_{15}$’, Appl. Phys. Lett., vol. 106, no. 7, Jan. 2015, doi: 10.1063/1.4913446.
[37] T. Gottschall, K. P. Skokov, B. Frincu, and O. Gutfleisch, ‘Large reversible magnetocaloric effect in Ni-Mn-In-Co’, Appl. Phys. Lett., vol. 106, no. 2, p. 021901, Jan. 2015, doi: 10.1063/1.4905371.
[38] L. Caron et al., ‘Effect of Pt substitution on the magnetocrystalline anisotropy of Ni2MnGa: A competition between chemistry and elasticity’, Phys. Rev. B, vol. 96, no. 5, p. 054105, Aug. 2017, doi: 10.1103/PhysRevB.96.054105.
[39] S. R. Barman et al., ‘Theoretical prediction and experimental study of a ferromagnetic shape memory alloy: Ga2MnNi’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 78, no. 13, p. 134406, Oct. 2008, doi: 10.1103/PhysRevB.78.134406.
[40] V. V. Khovaylo et al., ‘Peculiarities of the magnetocaloric properties in Ni-Mn-Sn ferromagnetic shape memory alloys’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 81, no. 21, p. 214406, Jun. 2010, doi: 10.1103/PhysRevB.81.214406.
[41] V. V. Khovaylo et al., ‘Magnetic properties of Ni50 Mn34.8 In15.2 probed by Mössbauer spectroscopy’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 80, no. 14, p. 144409, Oct. 2009, doi: 10.1103/PhysRevB.80.144409.

[42] T. Gottschall et al., ‘Dynamical Effects of the Martensitic Transition in Magnetocaloric Heusler Alloys from Direct Δtad Measurements under Different Magnetic-Field-Sweep Rates’, Phys. Rev. Appl., vol. 5, no. 2, p. 024013, Feb. 2016, doi: 10.1103/PhysRevApplied.5.024013.

Read More »

Finite Element Analysis and Drawing of Magnetic Flux Path with the Developed Program

[Mehmet ÇINAR] Volume 6: Issue 4, Dec 2019, pp  127 - 131

DOI: 10.26706/IJAEFEA.2.6.20191101

Abstract One of the methods used in the solution of partial differential equations is the finite element method. The solution region of the differential equation to be solved in finite element method is divided into sub-sections. When making finite element analysis, magnetic flux path drawing is made by making use of vector potential values of the nodes in the solution of the magnetic region. Thus, the finite element analysis gives information about the magnetic structure of the region. However, it is useful to use the moving finite element method instead of the classical finite element method when time dependent partial differential equations change and the solution network changes regionally.
In this article, drawing of magnetic flux path used in finite element analysis is mentioned. Application of a C ++ based software has been realized and the sample magnetic flux path drawings have been obtained.

Index terms - Mesh Generation Methods, Finite Element Method, Moving mesh generation.
[1] Mehmet Aydın, Beno Kuryel, Gönül Gündüz, Galip Oturanç, 2001,” Diferansiyel Denklemler ve Uygulamaları”,İzmir.
[2] R. Rannacher, 2001, ”Adaptive Galerkin Finite Element  Methods for Partial Differential Equations”, Journal of Computational and Applied Mathematics, 128, 205-233.
[3] S.H. Lo., 2002, “Finite element mesh generation and adaptive meshing“, Prog. Struct. Analysis Materials, Vol:4, pp:381-399.
[4] Baker TJ. 1989, “Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation”, Engineering with Computers 5: 161–175.
[5] Lee CK., 2000, “Automatic metric advancing front triangulation over curved surfaces”,  Engineering Computations 17(1): 48–74.
[6] Shephard MS & Georges MK. 1991, “Automatic three-dimensional mesh generation by the finite octree technique”, International Journal for Numerical Methods in Engineering 32: 709–749.

[7] Luiz Vello, Denis Zorin  2001, “4-8 Subdivision”, Computer Aided Geometric Design, vol:18, pp:397-427.

Read More »

Mesh Generation Methods and Moving Mesh Generation Using Developed Program

[Mehmet ÇINAR] Volume 6: Issue 3, Sept 2019, pp  121 - 126

DOI: 10.26706/IJAEFEA.2.6.20190803

Abstract One of the most commonly used methods in numerical solution of partial differential equations is the finite element method. In the finite element method, the region to be analyzed is divided into sub-sections called solution regions provided that the boundaries of the region are determined. This subdivision method depends on the type of differential equation to be solved. A variety of solution network production techniques are used to subdivide the solution region. By selecting the appropriate method, the solution region is divided into sub-compartments to ensure that the solution is faster and more accurate. The classical finite element method gives accurate results when instant analysis is performed on the solution area. However, in cases where partial differential equations change with time and solution network changes regionally, it is useful to use moving finite element method instead of classical finite element method. The use of a moving finite element method allows analysis to be carried out only in varying regions of the solution network to ensure rapid results. In this study, two dimensional solution network production techniques are mentioned. With the help of the developed program, regional changes on the solution network are explained in detail. As an application, C ++ based software was implemented.

Index terms - Mesh Generation Methods , Finite Element Method, Moving mesh generation.
[1] Mehmet Aydın, Beno Kuryel, Gönül Gündüz, Galip Oturanç, 2001,” Diferansiyel Denklemler ve Uygulamaları”,İzmir.
[2] R. Rannacher, 2001, ”Adaptive Galerkin Finite Element  Methods for Partial Differential Equations”, Journal of Computational and Applied Mathematics, 128, 205-233.
[3] Susan Brenner 2002, “ The Mathematical Theory of Finite Element Method”, Springer Verlag Press Berlin.
[4] Thomas R. Hughes , 2000, “The Finite Element Method  Linear Static and Dynamic Finite Element Method”, Dover Publications, New York
[5] S.H. Lo., 2002, “Finite element mesh generation and adaptive meshing“, Prog. Struct. Analysis Materials, Vol:4, pp:381-399.
[6] Delaunay “B. Sur la sphere vide. Bulletin”, Acade´mie des Sciences URSS. 1934: 793–800
[7] Lawson CL. 1977, “Software for C1 surface interpolation”, Mathematical Software III 161–194.
[8] Baker TJ. 1989, “Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation”, Engineering with Computers 5: 161–175.
[9] Zhu JZ, Zienkiewicz OC, Hinton E & Wu J., 1991, “A New Approach to The Development of Automatic Quadrilateral Mesh Generation”, International Journal for Numerical Methods in Engineering 32: 849–866.
[10] Lee CK., 2000, “Automatic metric advancing front triangulation over curved surfaces”,       Engineering Computations 17(1): 48–74.
[11] Lo SH., 1991, Automatic mesh generation and adaptation by using contours. International Journal for Numerical Methods in Engineering 31: 689–707.
[12] Shephard MS & Georges MK. 1991, “Automatic three-dimensional mesh generation by the finite octree technique”, International Journal for Numerical Methods in Engineering 32: 709–749.
[13] Luiz Vello, Denis Zorin  2001, “4-8 Subdivision”, Computer Aided Geometric Design, vol:18, pp:397-427
[14] Zienkiewicz OC & Phillips DV., 1971, “An automatic mesh generation scheme for plane and curved surfaces isoparametric coordinates”, International Journal for Numerical Methods in Engineering 3: 519–528.
[15] Zhu JZ, Zienkiewicz OC, Hinton E & Wu J., 1991, “A new approach to the development of automatic quadrilateral mesh generation”, International Journal for Numerical Methods in Engineering, 32: 849–866.

Read More »

Popular Posts