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Abstract: Traditional farming methods consume time and effort, which affects productivity. 

Intelligent farming seeks to enhance decision-making and agricultural of crops through the 

integration and data analysis abilities of the Internet of Things. Plant diseases result in significant 

financial losses in the farming sector. Accurately detecting of diseases is crucial for ensuring the 

long-term sustainability of agriculture. Deep learning, has recently garnered significant attention 

for plant and weed detection, disease diagnosis, and pest classification in agricultural industries.  

In this paper, the most previous studies have been discussed focusing on a several plant species 

and a specific type of disease. PlantVillage dataset utilized for the DL models. The dataset 

includes 14 types of plants images with 39 different classes of plant diseases. We propose an 

enhanced deep learning models (EfficientNetB2, Xception, ResNet50) by adding a custom 

classification layer, which significantly improved the model's accuracy and classification 

performance. The improved models achieved accuracy as: (EfficientNetB2 is 97.70% , ResNet50 

is 97.86% and Xception is 98.97%). The primary objective of this study is to empower farmers to 

identify plant diseases in early stage of disease without consulting experts.. 

 

Keywords: Artificial Intelligence, Computer Vision, Deep Learning Models, Image Detection, 

Plant Disease Classification. 

 

1.  Introduction 

The agriculture industry is crucial due to the expected worldwide population rise. The 

Food and Agriculture Organization predicts a 2 billion rise in world population by 2050 

[1]. Thus, food demand rises. The agriculture industry is experiencing the 4th revolution 

in industry, amalgamating innovative technologies with conventional agricultural 

practices. Smart agriculture is essential for modernizing the farming industry with 

creative solutions[2]. Smart agriculture modern on exact geographical and temporal 

resolution by employing modern information technology to acquire, alter, and analyze 

data from many sources. The goal is to improve crop production management and inform 

agricultural decision-making [3]. To ensure high-quality plant-based products, they must 

be protected from pathogens[4]. Food security is threatened by plant diseases that harm 

agricultural crops during growth. Many plant diseases generate significant economic 

losses in the agriculture business globally. Immediate growth retardation may harm 

yields[5][6]. Artificial intelligence-based technologies can build faster and more accurate 

plant disease detection tools[7]. Object Detection is computer vision technique used to 

detect object and identify its localization [8]. Abnormality detection identifies unusual 

patterns in datasets due to its feature. This method has many applications, such as 

detecting financial fraud, network intrusions, disease indicators in medical diagnostics, 

and smart agricultural systems [9]. Recently, Deep Learning, particularly CNN[10], has 

gained popularity in agriculture for plant and weed identification, disease diagnosis, and 

pest categorization. One benefit of the CNN-based approach is its ability to automatically 

extract relevant characteristics from datasets[11]. Typically, deep learning models require 

several parameters. This leads to significant processing costs for deep learning models.  
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The implementation will be difficult. A smart agricultural embedded system must minimize computational complexity 

and memory utilization while retaining high accuracy. The rest of this paper include:  Section 2: gives an evaluation of 

existing studies. Section 3: demonstrate the proposed models implementation. Section 4: Shows the proposed system’s 

experimental results, describes these results and compares them with previous works. Section 5: Covers the conclusions 

and prospective research recommendations. 

2.  Related literature study 

Geetharamani et al. (2019) presented a deep CNN (DCNN) system for detecting of plant disease based on the 

PlantVillage dataset, which includes 39 leaf classifications and background pictures. To improve model performance, 

data augmentation was used. After extensive simulation, the suggested model outperformed standard machine learning 

approaches with 96.46% classification accuracy [12]. 

A ResNet101-based deep learning approach by Prabhakar et al. (2020) identified tomato plant illness. Disease 

classification by fold scope microscope, while severity evaluation uses ResNet101. Images of weakly, moderately, and 

severely damaged tomato leaves and healthy leaves from PlantVillage are used for model training. Among pre-trained 

models, ResNet101 had the highest accuracy of 94.65 in estimating tomato leaf early blight severity[13]. 

Jasim et al. (2020) suggested a CNN-based on the disease on plant leaf for classification and detection system. Used 

PlantVillage photos to focus on potatoes, peppers, and tomatoes. The suggested system has 98.29% training accuracy and 

98.029% testing accuracy across the dataset[14]. 

Falaschetti et al. (2022) recommended utilising the OpenMV Cam Plus, a cost-effective, energy-efficient platform, to 

construct a CNN-based detector for real-time plant disease categorization. CNNs are trained using ESCA and 

PlantVillage datasets. CNN-based image detectors had 98.10% ESCA and 95.24% PlantVillage accuracy [15]. 

In 2023, Jasrotia et al. introduced a customized CNN system for maize detecting plant disease. Preprocessing is used 

in this model. Image conversion from RGB to HSV with contrast limiting adaptive histogram equalization. The models 

are evaluated against CNN and SVM approaches with no pre-processing. PlantVillage maize crop dataset was used for 

tests. The model's accuracy was 96.76%[16]. 

Shafik et al. (2024) presented Initial fusion (AE) and dominate polling quintet plant disease detection models. To 

enhance plant disease diagnosis and categorization, these models were combined with 9 pre-trained DL models and fine-

tuned by extraction of deep feature. 15 categories from the widely used PlantVillage dataset were studied. In last phase, a 

(LR) classifier measure CNN model combinations. AE and LVE had 96.74% and 97.79% accuracy, respectively[17]. 

3.  Plantvillage Dataset Description 

The PlantVillage dataset is an extensive collection of plant images designed for diagnosing agricultural diseases. The 

PlantVillage project offers the dataset openly[18]. The dataset contains 55448 images, including 39 classes of 14 plants, 

including healthy, infected leaves images, and background images. The plant categories classes within PlantVillage 

includes: cherry, potato, apple, raspberry, soybean, squash, blueberry, strawberry corn, grape, orange, tomato, peach and 

pepper.  The plant diseases classes defined as : Tomato yellow leaf curl virus, powdery mildew, bacterial spot, spider 

mites, early blight, mosaic virus, septoria leaf spot, cedar apple rust, two-spotted spider mites, apple scab, target spot, 

common rust, late blight, and leaf curl. 

 
Figure 1: Samples images from PlantVillage dataset. 
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4. The Proposed Models 

The models presented in this study consist of two main stages. The first stage is data preprocessing, this aims to 

effectively prepare the input data to optimize the performance of DL algorithms. The second stage involves improving 

the EfficientNetB2, ResNet50 and Xception.  

4.1preprocessing phase 

Preprocessing plays a crucial role in preparing image data for DL modeling. Preparing and transforming raw data is 

essential for effective model training. This phase includes two steps: 

a. Image resizing step: resizing the images in the dataset. Plant images dimension were resized from (256×256) to 

(180×180) thus, reduce the runtime. 

b. Image Enhancement step: The quality of the input data can significantly impact the model's accuracy. This step 

included to make the input plant image supported with more Sharpening, to ensuring that the images used in the 

system are clear and contains much more detailed to obtain more reliable and accurate results. Based on our 

experiment the best contrast and sharpening on input image when the enhanced a parameter value = 3. 

Five image augmentation techniques were applied: 

a) Rotation with a range of (15) degrees to provide variations in the orientation of objects within the image. 

b) Shear with a range of (0.2) to skew the image along a specified axis introducing new perspectives and shapes. 

c) Zoom with a range of (0.2) to simulate different scales and perspectives of the objects in the image. 

d) Horizontal and vertical flip to create mirror image; this enables the model to acquire consistent attributes 

irrespective of the object's position. 

 

Figure 2: The proposed model flowchart. 
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4.2. The dataset Splitting 

In this step the dataset categorized for three subsets: 

a) The training set is the largest set in the dataset (80%) and is used to train presented models and modify the 

weights by observing and learning the correct output.  

b) The validation set (10%). This component is employed to evaluate the model by modifying the hyperparameters. 

This data has an indirect impact on the models as it is seeing by the models but not utilized for learning 

purposes. 

c) The testing set (10%) is an independent component of the dataset that is utilized to provide an unbiased and 

accurate evaluation of the models after the complete training process is complete 

4.3. The proposed models 

The use of pre-processing steps and diverse integrated methods with deep learning to enhance detection efficiency 

[19]. In our research paper, we employs there deep learning models for improvement (EfficientNetB2, Xception, 

ResNet50), where we focusing on the final classification layer to obtain more accuracy , in each model the final 

classification layer was removed for further investigate to consolidating by utilizing the models for feature extraction 

only, leveraging their learned features from the ImageNet dataset. A custom classification layer was added, allowing 

more accurate and context-specific predictions. This modification capitalizes on the robust feature extraction capabilities 

of the models while ensuring that the final classification is optimized for the dataset, thus enhancing overall models 

performance. The modified classification layer includes the bellow stage: 

a) applied batch normalization, which improve the performance, stability and accelerates training by normalizing 

each layer’s inputs; batch normalization allows higher learning rates, which speeds up the training process.  

b) Incorporate two dense layers, each containing 64 and 256 neurons. These dense layers include different 

regularization techniques to prevent overfitting. The first technique includes use of the kernel_regularizer, with 

L2 regularization strength of 0.013, penalizes large weights, the activity_regularizer and bias_regularizer, with 

L1 regularization strength of 0. 006. 

c) c) Linear activation functions are advantageous just for estimating linear hypothesis functions.  Nonlinear 

activation functions are often utilized because to the often nonlinear connection between input and output in 

complicated issues.  

d) The ReLU function is basically employed in dense layers because it enhances learning speed and efficiency. 

e) a dropout layer is added, featuring a seed value of 123 and a rate of 0.35, defined as a technique for regularizing 

deep learning models. With this technique, randomly chosen neurons can be disregarded while training. This 

causes the contribution of these neurons to be momentarily suppressed during forward propagation, prevents 

overfitting by speeding up models training. 

f) The final dense layer is output layer comprises 39 units, corresponding to the many kinds of diseases of plant in 

which the models needs to classify. 

g) Softmax is utilized in the last layer to categorize the output, generating a probability distribution across the 

classes. This enables us to interpret the models output as each class’s probability.  

A general overview of the models is presented in Figure (3). A hyperparameters in the proposed model presented in 

Table (1). 
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Figure 3: Structure Diagram of the proposed DL Model. 

Table 1: The Proposed DL models Hyperparameters of. 

Models Hyperparameters 

Proposed DL models 

Activation function ReLU 

Training epochs 60 

Mini batch sizes 32 

Dropout value 0.35 

Learning rate 0.001 

Optimization Adam Momentum = 0.99 

L1_Regularization = 0.006 

L2_Regularization = 0.013 

 

5. Experimental Results 

5.1. Software and hardware framework 

The studies are conducted in an environment equipped with the following hardware: Central Processing Unit (CPU): 

Intel(R) Core(TM) i5- 11400H @ 2.70GHz 2.69 GHz, and a RAM capacity of 16.0 GB. The operating system is 

Windows 11, specifically the 64-bit version. The code was implemented in Python 3.8 programming language within the 

PyCharm environment. The library and programming environments utilized in the project included Tensor Flow, Scikit-

learn, Keras, Pandas, OpenCV2, Matplotlib, Pickle, and NumPy. The proposed models applied using 55,448 plant 

images, divided for  44,358 for training and validation and testing get 55, 45 images. 
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Table 2: Dataset descriptions used in Proposed Models. 

Class Name Total 

Images 

Train 

(80%) 

Validation 

(10%) 

Test 

(10%) 

Apple scab 630 509 67 54 

Apple Black rot 621 493 62 66 

Apple Cedar apple rust 275 230 23 22 

Apple healthy 1645 1311 162 172 

Background without leaves 1143 901 131 111 

Blueberry healthy 1502 1213 139 150 

Cherry Powdery mildew 1052 848 104 100 

Cherry healthy 854 662 92 100 

Corn Cercospora leaf spot 513 416 50 47 

Corn Common rust 1192 955 112 125 

Corn Northern Leaf Blight 985 797 95 93 

Corn healthy 1162 926 111 125 

Grape Black rot 1180 933 108 139 

Grape Black Measles 1383 1102 153 128 

Grape Leaf blight 1076 882 86 108 

Grape healthy 423 343 40 40 

Orange Haunglongbing 5507 4383 591 533 

Peach Bacterial spot 2297 1857 249 191 

Peach healthy 360 288 32 40 

Pepper bell Bacterial spot 997 811 91 95 

Pepper bell healthy 1478 1179 143 156 

Potato Early blight 1000 793 103 104 

Potato Late blight 1000 814 87 99 

Potato healthy 152 125 12 15 

Raspberry healthy 371 296 37 38 

Soybean healthy 5090 4060 530 500 

Squash Powdery mildew 1835 1474 183 178 

Strawberry Leaf scorch 1109 872 112 125 

Strawberry healthy 456 364 48 44 

Tomato Bacterial spot 2127 1694 214 219 

Tomato Early blight 1000 808 89 103 

Tomato Late blight 1909 1493 200 216 

Tomato Leaf Mold 952 764 83 105 

Tomato Septoria leaf spot 1771 1447 165 159 

Tomato spider mite 1676 1362 167 147 

Tomato Target Spot 1404 1120 128 156 

Tomato Yellow 5357 4242 565 550 

Tomato mosaic virus 373 294 43 36 

Tomato healthy 1591 1297 138 156 

Total 55,448 44,358 5,545 5,545 

 

A set of experiments conducted to train the models, the best result was obtained when The final classification layer 

was removed, and two dense layers were added, each containing 64 neurons and 256 neurons, following a normalization 

process. Both of these layers include L1 and L2 regularization. Then, a dropout layer was added. The output layer 

comprises 39 units of dense layer. Softmax is utilized in the last layer to categorize the output. 

5.2. Efficientnetb2 model result 
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The EfficientNetB2 model demonstrated outstanding performance; the model also achieved a loss function of 1.25% 

in the training and a loss function of 1.05% in the validation. The accuracy of the EfficientNetB2 was 97.70%. It 

exhibited precision (98.54%) and recall (98.07%) across all disease categories, and an overall F1- score of 98.07%. The 

model's efficacy was also assessed by calculating the confusion matrix as show in Figure 5. Figures 4 (a) show the 

training accuracy and (b) show loss function, both training and validation losses consistently decreased over the 60 

epochs. 

        

                                                      (a)                                                                                                         (b) 

Figure 4: EfficientNetB2 Model (a) Accuracy of Training and Validation, (b) Loss Function. 

 

Figure 5: EfficientNetB2 Model Confusion Matrix. 

5.3. Xception Model Result 

Accuracy of training is 97.23 and validation is 98.97. The loss function is 1.35% in the training and 1.26% in the 

validation. The model's precision is 98.50% and recall is 90%, for the training. As for validation, it has reached precision 

97.48 % and recall 97.74 %. Figures 6 (a) show the training accuracy and Figures (b) show loss function for training and 

validation. 
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                                                     (a)                                                                                                    (b) 

Figure 6: Xception Model (a) Accuracy of Training and Validation, (b) Loss Function. 

 
Figure 7: Xception Model Confusion Matrix. 

5.4. Result of resnet50 model 

The Accuracy of training is 96.17% and validation is 97.86%. The loss function is 1.72% in the training and 1.56% in 

the validation. The model's precision and recall are 97.86% and 84.52%, respectively for the training. As for validation, it 

has reached precision and recall 97.12%, 93.72%, respectively. Figures 8 (a) show the training accuracy and (b) show 

loss function for training and validation. 
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                                                          (a)                                                                                                     (b) 

Figure 8: ResNet50 Model (a) Accuracy of Training and Validation, (b) Loss Function. 

 

Figure 9: ResNet50 Model Confusion Matrix. 

Table 3: Comparison of the Proposed models. 

Model Accuracy  Precision  Recall  F1-Score  

EfficientNetB2 97.70 98.54 98.07 98.07 

ResNet50 97.86 97.12 93.72 95.36 

Xception 98.97 97.48 97.74 97.61 

 

Table 4: Comparison with the Related Work 

Ref. No. Year Technique Dataset Used Accuracy 
No. of 

Classes 

[10] 2019 DCNN PlantVillage 96.46% 39 

[11] 2020 ResNet101 PlantVillage 94.6% 4 
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[12] 2020 CNN PlantVillage 98.029% 15 

[13] 2022 CNN PlantVillage 95.24% 38 

[14] 2023 CNN PlantVillage (Maize crop) 96.76% 4 

[15] 2024 
PDDNet-AE, 

PDDNet-LVE 
PlantVillage 96.74% - 97.79% 15 

Proposed 

models 

2025 EfficientNetB2 PlantVillage 97.70% 39 

2025 ResNet50 PlantVillage 97.86% 39 

2025 Xception PlantVillage 98.97%. 39 

 

 

6. Conclusion 

Plant diseases represent major problems that concerns food security and cause significant economic losses. Detecting 

diseases using traditional methods is ineffective in time and effort, especially in large agricultural areas. This paper 

develops effective methods for the timely diagnosis of plant diseases to avoid plant losses. Three types of CNN were 

applied for plant diseases detection and classificatin, EfficientNetB2, Xception, and ResNet50 models. These models 

were trained, validated and tested on PlantVillage dataset. preprocessing phase is crucial for implementing the proposed 

system. At this stage, the original image of the plant leaves undergo several operations, including the sharpening 

technique to highlight the edges of the images, which facilitates the extraction of features. The augmentation represent a 

powerful method for improving the training of the proposed models, reducing overfitting and increasing accuracy.CNN 

models achieved a high accuracy as EfficientNetB2 is 97.70% , ResNet50 is 97.86% and Xception is 98.97%. Future 

work may include enhancing the efficiency and robustness and Expanding disease detection to cover plant components 

beyond leaves, such as flowers, fruits, and stems.   
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