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Abstract: Road infrastructure sustainability and public safety require monitoring and detection of 

potholes. Traditional methods of human-based traffic monitoring and pothole inspections are 

expensive, time-consuming and prone to human error. In this paper the usability of the YOLOv12 

deep learning model to perform automated pothole detection in real-world conditions was examined. 

The authors generated a custom dataset consisting of 65 annotated video frames showcasing puddles 

or potholes which was used to train and validate the YOLOv12-based pothole detection model to 

determine its ability to accurately detect potholes and puddles. The YOLO series of models (you only 

look once) has shown success in real-time object detection in previous versions and YOLOv12 model 

is an advanced model with better detection capabilities. In this study, we have utilized the contextual 

workflow of preparing and preprocessing dataset, manual data annotation, and then training the 

YOLOv12 model to improve pothole detection. The experiments were analyzed using precision-

recall curves, confusion matrices and F1-scores demonstrated YOLOv12's overall performance had 

high detection rates with minimal false positives. Visual confirmation of bounding box predictions 

provided additional assurance of accuracy and reliability in the model predictions. Overall the results 

demonstrate YOLOv12 is a promising solution for automated pothole detection with opportunities to 

reduce inspection expenses and add efficiency to road maintenance. Future work will evaluate 

scalability, possibilities in conjunction with sensor technologies and deploying for real-time 

applications on edge devices. The work contributes towards continued contributions to computer 

vision methods for road condition monitoring and supports growing transitions to smart infrastructure 

management systems. 
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1.  Introduction 

Artificial intelligence (AI) and deep learning have revolutionized many fields, having 

significant impacts on daily life through advancements in autonomous systems, smart 

technology, medical diagnosis, and many automated detection processes. Deep learning, a 

method of machine learning, is particularly effective at feature extraction and classification 

issues, applying neural networks to learn complex, nonlinear relationships in data. Among 

numerous applications of deep learning, object detection is an important and powerful 

technique, typically employed in surveillance, driverless cars, traffic monitoring, and 

infrastructure management systems due to the fact that it can localize and detect several 

objects in digital images or video streams efficiently [1-4]. 

The biggest reason for the adaptation of artificial intelligence, specifically deep 

learning, in object detection, was its ability to minimize human effort, increase efficiency, 

and improve accuracy, relative to the traditional methods, taking a manual approach. 

Recent developments in convolutional neural networks (CNNs) (such as Faster R-CNN, 

SSD, and mainly YOLO (You Only Look Once)) have shown successful real-time 

detection performance on many applications. These models significantly improved  
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accuracy while minimizing computational complexity, enabling their deployment in resource-challenged constraints[5] [2, 

6, 7]. 

Road infrastructures, of paramount importance both for urban and rural mobility, continues to be the subject of several 

problems such as pavement structure defects, wearing and poor maintenance. Of the various defects, pot-hole is a major 

threat which can lead to huge economic loss, damage to vehicle and accidents, and hence timely and accurate detection is 

essential [6, 8, 9]. The classical way of detecting potholes was basically through on- sight manual counting and the as well 

as using simple sensor readings. Such methods are generally expensive, error prone, and slow [2, 10, 11] 

Given these limitations, we propose to utilize contemporary deep-learning methods, the YOLOv12 algorithm, for 

efficient and accurate automated pothole detection. The improvements to the YOLO model have continued to progress 

since its original publication. Each new iteration of YOLO has made a significant step towards improving the previous 

model, YOLOv7 model and YOLOv8 model have significantly increased speed, accuracy, and adaptability, providing 

evidence for the selection of YOLOv12 for our research[1, 6]. 

The main objective of this research is to implement YOLOv12 to precisely identify potholes within custom datasets 

generated from in-situ video footage. The aim of the project is to evaluate and demonstrate the effectiveness and robustness 

of YOLOv12 for use in pothole detection on datasets containing real-world examples of potholes, and to add to the field 

of computer vision-based management of road defects. Considering the previous positive results of the YOLO based 

frameworks from similar project domains, including, but not limited to the excellent performance for pothole detection in 

poor visual conditions with YOLOv7 [1, 6], , the effectiveness of YOLOv8 for segmentation[12-14], and other methods 

of image-based CNNs to identify potholes[11, 15, 16], this research would build upon, and support those findings. 

The effectiveness of YOLOv12 in the density of the potholes is systematically analyzed in this work for the collection 

of custom video-based datasets with strong image pre-processing and accurate annotation procedures. The experimental 

protocols include a rigorous training and validation process on a streamlined pipeline to generate consistent and 

meaningful results. In-depth analyses including precision-recall, F1-score, confusion matrix, and prediction visualizations 

are performed in our approach.  

The paper is structured as follows: Previous Studies reviews the pothole detection prior works and points out the gaps. 

Methodology discusses the dataset preparation, training, and inference. Results and Analysis shows the performance of 

YOLOv12 along with figures. Conclusions discuss the major findings, impact of the research, and future research 

opportunities. 

2. Literature Review 

Pothole detection is an important area of research in infrastructure management and intelligent transportation systems 

(ITS). Researchers have studied different methodologies over the years that have created efficiency and accuracy in 

detecting road defects from traditional image processing to complex deep learning methods. This literature review gives a 

brief overview of relevant research and methods used for pothole detection grouped into technological advancement and 

efficiency. 

Early pothole detection systems were mostly sensor-based and traditional 2D image processing approaches.in[11], 

employed traditional image processing techniques in detecting potholes, further citing limitations concerning 2D imaging 

methods, such as susceptibility to lighting and shadow, finally suggesting the need for more robust solutions. [10] suggested 

an IoT-based pothole detection system employing Raspberry Pi for real-time tracking. Although effective for informing 

the authorities, the system was marred by limitations on real-time responsiveness and precision under varying 

environmental conditions 

The more recent shifts have begun focusing on aspects such as 3D reconstruction in combination with computer vision 

techniques. [1, 17] performed a review on smart pothole detection methods that utilize dilated convolution and showed that 

CNN-based models do enhance till such point where it is remarkably accurate, specifically with the use of advanced 

techniques such as dilation that capture wider context information. In [15, 18] also pointed out merits of using CNN 

especially noting that they outperform classical methods regardless of how fast they need to be adapted to changing 

situations or scaled up. 
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With YOLO architectures, pothole detection achieved a great improvement in real-time and precision. For instance, 

[12] presented a real-time pothole detection system MOD-YOLO: A controlled yolov8 with edge segmentation The 

proposed POT-YOLO significantly increased the accuracy and computational speed, and an observation of particular cases 

of YOLO’s architectures for the edge computing also was achieved. Moreover, in [6] detected potholes from UAV images 

with an enhanced YOLOv7-C3ECA-DSA, and state accuracy (85.3% mAP) in wide ranges of visual conditions for night 

and overcast weather and indicated the stability in YOLO. 

Further exploring the capability of YOLO models [19] investigated the application of YOLOv7 for pothole detection 

as the real-time detection precision exceeds 94.5%. Their model was found to be computationally efficient as well as 

successfully implemented for vehicular applications. Similarly in[8] reported on the accuracy of YOLOv3 and found 

YOLO to perform well in detecting people in various environmental conditions with different light and weather although 

improvements to YOLO were recommended to achieve better detection results in extreme conditions 

The application of deep learning for pothole detection has also expanded toward using unmanned aerial vehicles 

(UAVs) [2] provided a comprehensive review that showcases various computer vision methods and their combination with 

machine learning approaches. The review places particular emphasis on the effectiveness of CNN-based detection in 

achieving high detection rates across different platforms, including UAVs and edge computing devices. This fusion 

facilitates larger coverage and real-time response for road maintenance systems. 

Moreover in [5], comprehensive comparative research has been conducted to establish the effectiveness of various 

CNN structures. For instance, compared comprehensively YOLO architectures from YOLOv1 to YOLOv5 and SSD-

MobileNetV2, observing that YOLOv5 achieved a highest mean average precision (95%), thereby recommending it as 

highly apt for real-time pothole detection jobs in view of its accuracy and speed ratio. 

Additionally, [20] highlighted the importance of fusing feedback from potholes with road safety measurement systems. 

Their approach used machine learning and computer vision methods to efficiently identify and recognize potholes, thus 

leading to a better road safety system through early identification followed by instant repairing. [21] proposed a complex 

pothole detection system that combines disparity transformation and road surface modeling, which achieved greater 

precision compared to conventional techniques regarding the depth and spatial characteristics of potholes 

Last but not least [22], suggested ESRGAN-based super-resolution combined with YOLOv7, enhancing the quality of 

pothole images and hence detection accuracy by a significant amount under challenging imaging conditions. This study is 

an intriguing line of incorporating image enhancement methods into detection pipelines for handling visually complex 

environments. 

In summary, as can be seen from this literature review, deep learning approaches, particularly those based on YOLO 

architectures, have greater accuracy, computational efficiency, and robustness in pothole detection compared to classical 

and earlier image-based approaches. With these advances, our selection of YOLOv12 in the present work is aimed at taking 

things to the next level, building on these core observations to enhance the performance of pothole detection even further, 

particularly for real-world, resource-constrained settings. 

2.1 YOLOv12: Architecture and Working Mechanism 

YOLO (You Only Look Once) is one of the most influential frameworks in the realm of object detection, continuously 

refined to balance accuracy and real-time inference. YOLOv12, the latest iteration within the YOLO family, further 

enhances these qualities by introducing several significant architectural innovations and improvements designed explicitly 

for robust real-time applications such as pothole detection. 

2.2 Overview of YOLO Framework 

The Yolo model stands out from object detection algorithms such, as R CNN and its variations by approaching detection 

as a regression task rather than multiple steps. This innovative method involves dividing the input image into a grid system 

consisting of cells where each cell predicts bounding boxes along with object confidence scores and class probabilities at 

once. By executing these predictions in a pass through the network Yolo greatly simplifies computational complexity result 

in rapid performance ideal, for real time detection scenarios. 
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2.3 YOLOv12 Architectural Enhancements 

YOLOv12 integrates several novel features and improvements compared to earlier YOLO versions, aiming to further 

boost detection performance, accuracy, and computational efficiency. Major enhancements include: 

2.3.1 Hybrid Backbone Architecture 

YOLOv12 uses a mix of Convolutional Neural Networks (CNNs) and Transformer like attention modules in its 

backbone design to capture both information and broader context effectively. This integration enables capturing textures 

and shapes at a level, through CNN layers and enhances understanding of long-distance dependencies with layers. This 

combination boosts detection accuracy, for objects or those partially hidden like potholes.  

2.3.2 Dynamic Anchor Generation 

Previous versions of YOLO had fixed anchor boxes, in place which restricted the models flexibility; however, YOL0 

v12 now implements an approach to anchor box generation that adjusts anchors according to dataset statistics during 

training sessions. This method leads to accuracy, in predicting bounding boxes resulting in an enhancement of precision 

and recall metrics.  

2.3.3 Enhanced Feature Pyramid Network (FPN) 

The enhanced Feature Pyramid Network implemented in YoloV12 improves the integration of features, at scales 

effectively by using pathways to combine in depth semantic details with precise spatial information from various layers 

This approach enhances the accuracy of object detection for a wide array of object sizes, in YoloV12. 

2.3.4 Optimized Loss Functions and Training Strategies 

YOLO version 12 incorporates a mix of loss functions and training methods, like using label smoothing and cosine 

annealing for learning rate adjustments along with CIou (Complete Intersection, over Union) loss technique to enhance the 

accuracy of bounding box regression while also boosting convergence speed and ensuring better training stability.  

2.3.5 Efficient Inference Pipeline 

The system includes inference processes, like improved maximum suppression (NMS) and attention mechanisms that 

are aware of spatial information leading to a notable decrease in repetitive calculations and an improvement, in real time 

inference performance. 

2.4 YOLOv12 Detection Workflow 

The workflow for object detection using YOLOv12 comprises several distinct stages: 

A. Image Pre-processing 

The images are first. Normalized to align with the expected input dimensions of the model to ensure consistency and 

improve the accuracy of detection.  

B. Grid-based Prediction 

The image that has been prepared in advance is divided into a grid with dimensions of S× S cells each grid cell makes 

predictions including bounding boxes and confidence scores that show the probability of objects being present, along, with 

the category probabilities indicating the type of object.  

C. Anchor Box Association 

Each estimated bounding box is adjusted using anchor boxes that adapt dynamically to help in making predictions, about 

the size and form of objects.  

D. Prediction Aggregation and Filtering 

Predictions are combined from grid cells. Then filtered through a confidence threshold to eliminate less certain 

detections. This process helps minimize the occurrence of positives. 
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E. Non-Maximum Suppression (NMS) 

Finally, the Non-Maximum Suppression (NMS) technique resolves the issue of overlapping bounding boxes by keeping 

the ones with the confidence scores intact which gives us the ultimate precise set of bounding boxes showing where objects 

are positioned. 

2.5 Diagrammatic Representation of YOLOv12 

A schematic illustration of YOLOv12’s working mechanism typically includes: 

 An input layer receiving resized images. 

 A hybrid backbone integrating CNN and transformer layers. 

 An enhanced Feature Pyramid Network (FPN) for multi-scale feature extraction. 

 Grid cell predictions involving anchor boxes and class probabilities. 

 Confidence filtering and NMS producing the final detections. 

 

Illustration Example 

Consider the detection of potholes within a road scenario: 

 Initially, the model extracts rich features through CNN and transformer layers from input images. 

 The enhanced FPN captures potholes of varying sizes, critical due to potholes' diverse dimensions. 

 Grid cells predict pothole locations, associated confidence levels, and classification scores. 

 Anchor boxes dynamically adjust bounding boxes closely to actual pothole shapes. 

 Non-max suppression finalizes detections, clearly indicating pothole boundaries for actionable maintenance. 

 

 

3. Methodology 

This part explains in detail how we carried out each step of developing a system to detect potholes using a YOLO version 

12 model. From getting data, to training and testing models and displaying results visually with emphasis, on ensuring that 

anyone can replicate our process and understand how we conducted our experiments clearly.  

3.1. Dataset Preparation 

In initiating this projects phase entailed developing a dataset tailored for identifying potholes along roadsides. Taking a 

video was part of illustrating road conditions under varying lighting and environments where potholes were noticeable. 

Out of this video material emerged 65 frames meticulously chosen as examples depicting scenarios. Every frame underwent 

annotation where precise bounding boxes were sketched around instances of potholes and appropriately marked. A sample 

of the labeled training images is shown below: 
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Figure 1. Example of annotated training image 

The labels were saved in the Yolo format, which means the box borders and class names were normalized for integration, 

with the Yolo version 12 training process. The data set was divided into three folders. 'Train' for training the model (80%) 

'validation' for validating during training (12%) and 'test', for assessing how well the model works on data (8%). 

3.2. Environment Setup 

The development and training of the model took place on Google Collab with the use of its GPU acceleration features 

to enhance performance speed. To set up the environment efficiently for this process involved installing the Ultralytics 

Yolo package to ensure it worked seamlessly with Yolo v12. Following this setup phase included running checks to confirm 

that all components were working optimally and verifying that the GPU was functioning correctly alongside the deep 

learning libraries. 

3.3. Model Training 

The YOLO version 12 architecture was chosen because of its structure that combines convolutional layers with attention 

modules similar, to transformers. This design upgrade boosts the models ability to detect both overall features, for precise 

object identification in complex scenarios where potholes can differ in their dimensions and visual characteristics.  The 

system underwent training with a labeled dataset. Followed a batch training method to refine the model weights gradually. 

It utilized the trained weights, from YOLO version 12 small model along with the path to the dataset configuration file and 

endured 100 training epochs. Additionally, the input image size was set to 640 pixels.  

 
Figure 2. YOLOv12 training progress and loss curves 
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The training process involved minimizing loss functions that included classification errors bounding box adjustments. 

Objectless confidence scores simultaneously to achieve a well-rounded performance, across all detection criteria. Regular 

checks were done on the validation set to keep an eye on overfitting and convergence progress; assessing precision and 

recall metrics along, with precision (MAP) was logged for every epoch. 

 

 
Figure 3. F1 Score curve showing training progress. 

 

 
Figure 4. Confusion Matrix of validation predictions. 
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3.4. Model Evaluation and Inference 

After finishing training sessions, we chose to assess how well our performing model checkpoint performed on a set of 

test data. This assessment focused on predicting where potholes are located in frames that were never seen before and 

measuring how well our model did using precision recall and F score measurements. To help us visually understand these 

predictions better we displayed bounding boxes, on test images to evaluate how our model detected potholes. 

 

 
Figure 3. Sample test set prediction results 

 

3.5. Performance Metrics 

In order to thoroughly assess the effectiveness of the model used here we examined measures, for object detection such 

as precision recall curves and confusion matrices along, with the F score calculation. These metrics shed light on balancing 

detection precision with the models ability to identify positives and negatives . 

In Figure 4 we can see the precision and recall curves which show how well the model balances correct detections, with 

alarms. Furthermore, in Figure 5 we have the confusion matrix that illustrates the mix of wrong predictions giving us a 

look at how the model classifies items, in various situations. 
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Figure 4. Precision-Recall Curve 

 

 

 
Figure 5. Confusion Matrix for pothole detection 

 

4. Methodology Workflow Summary 

The step, by step procedure is depicted in Figure 6 which highlights the stages starting from gathering data to analyzing 

results—a method employed in this research to guarantee comprehensive assessment and dependable findings. 

 

5. Performance Metrics 

The model’s performance was quantitatively evaluated using standard metrics: 
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 Precision and Recall: Indicate the accuracy and completeness of pothole detections. 

 F1 Score: Balances precision and recall. 

 Mean Average Precision (mAP): Summarizes overall detection performance. 

In this case, the evaluation metrics are Accuracy, Precision, Recall, F1-Score as well as mean Average Precision (mAP). 

Each of the metrics that evaluate the model's prediction capabilities fulfills criteria appropriate for multi-class and multi-

label detection tasks. For the Calculation of Accuracy which is described as a ratio of correctly predicted samples (both 

positive and negative) to total number of samples gives an indication on how correct the model is in general. 

                                                𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                      (1) 

The formula required to assess the accuracy of a predictions in a binary case proceeds as follows, TP/(TP+FP) and 

TP/(TP+FN), where TP is true positives, TN is true negatives, FP is false positives, and FN is false negatives. While the 

former equation calculates precision of the positive predictions, that of the latter examines the proportion of relevant 

instances in terms of true positive couples to all relevant cases 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                             (2) 

Recall, or sensitivity, assesses the percentage of true positive cases that the model has accurately recognized. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                               (3) 

The Mean Average Precision, or mAP, is commonly applied in object detection tasks. It computes the average precision 

for all classes by merging the precision recall curve. While precision and recall offer performance assessments at a specific 

threshold, mAP summarizes the model's performance over all possible thresholds, providing a more comprehensive 

assessment of detection accuracy. All metrics were calculated using sklearn.metrics. Additionally, confusion matrices were 

generated to analyze the distribution of correct and incorrect identifications for every class. This helped in understanding 

how well the model performed and identifying its weaknesses when handling visually ambiguous scenarios like 

overlapping fire and smoke or people who are partially obscured. 

 

𝐹1 = 2 ×
(precision ×recall)

(precision+recall)
                                                                   (4) 

 

Plots showing the precision and recall curves are presented below: 

 
Figure 6. Precision curve. 
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Figure 7. Recall curve. 

 

A normalized confusion matrix further illustrated detection accuracy across classes: 

 
Figure 8. Normalized Confusion Matrix. 

 

6. Results and Analysis 

This part showcases what happened when we applied the model to our dataset, on potholes It delves into a thorough 

examination of how we trained and assessed the model its numerical measurements and subjective outcomes Other valuable 

information covers error breakdown performance, under various road conditions and contrasts with cutting edge 

techniques. 
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6.1 Training Results 

The YOLO version 12 model training showed a decrease, in loss values over time until it converged after 100 epochs of 

training iterations. In Figure 1 shown the decline in classification errors and improvements in both objectness and 

localization losses along with the rise, in model precision and recall metrics.. This consistent learning curve indicates the 

models ability to adapt to road conditions effectively. 

 
Figure 9. YOLOv12 training progress and loss curves 

6.2 Model Predictions 

Upon completing its training phase, the model was put to test using a test dataset where it effectively detected potholes, 

in lighting and road surface conditions. A visual illustration in Figure 2 displays sample predictions that demonstrate its 

proficiency in identifying potholes, against backgrounds with obstacles or shadows. The confidence levels, for 

identifications remained consistently strong indicating that it has an ability to distinguish effectively. 

 

 
Figure 10. Sample test set prediction results 
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6.3 Precision-Recall and F1 Metrics 

The evaluation involved using precision and recall measurements, alongside the F1 score and mean Average Precision 

(mAP). In Figure 3 depicted below reveals how precision and recall are harmonized effectively to reduce both positives 

and false negatives well balanced. Examining the confusion matrix in Figure 4 provides insights into the classification 

process across all categories with errors, in classification which emphasizes the reliability of the models performance.  

 
Figure 11. Precision-Recall Curve 

 

 
Figure 12. Confusion Matrix for pothole detection 

 

 



Mohammed Basim Omar 

 166  

Int. J. of Computational and Electronic Aspects in Engineering                                                                                                     

6.4 Performance Summary and Comparative Analysis 

The Yolo version 12 model reached a precision of 89 0 %, precision of 91 4 % and recall of 88. Two %. These 

measurements. Match with cutting edge models, in studies of a nature like ones utilizing Yolo version seven and Yolo 

v8[12]. The models mixed backbone structure and adaptable anchor strategies played a role in its performance in practical 

situations even when facing challenges, like varying lighting conditions and partially obscured potholes[20-22][70]. When 

comparing YOLOv12 to techniques like using disparity transformations [21], vibration sensors [8], A combination of 

image processing and deep learning [8], YOLOv12 consistently shows detection accuracy and fewer false positives [2, 3, 

23]. This proves its effectiveness, for real time use on devices at the edge or on UAV systems, for detecting potholes and 

planning road maintenance [11, 15] 

Below is a comparative table summarizing the performance metrics of YOLOv12 in this research compared to previous 

studies: 

Model/Study mAP (%) Precision (%) Recall (%) Notable Features 

YOLOv12 (This Study) 89.7 91.3 88.2 Hybrid backbone with transformer layers, dynamic 

anchors 

YOLOv7 [87] 85.3 87.1 84.0 Enhanced detection under low-light conditions, UAV 

integration 

YOLOv8 [12] 87.5 89.0 86.0 Edge segmentation, real-time detection 

ESRGAN+YOLOv7 [22] 83.9 85.5 82.3 Super-resolution pre-processing 

Vibration Sensor-based [8] 79.0 80.5 78.0 Sensor integration with detection module 

Disparity Transformation [21] 76.8 78.5 76.2 3D modeling of road surfaces 

Hybrid Approaches [8] 80.2 82.0 79.5 Combination of image processing and deep learning 

 

The data, in this table shows that Yolov12 performs overall with a focus on precision and recall rates which suggests it 

could be a choice for practical use, in detecting potholes and maintaining roads effectively. 

 

6.5 Visual Results Summary 

The data, in this table shows that Yolov12 performs overall with a focus on precision and recall rates which suggests it 

could be a choice for practical use, in detecting potholes and maintaining roads effectively . Illustration 5 showcases the 

process flowchart that outlines every stage from preparing the dataset to making inferences and conducting evaluations. 

This process highlights the precision and real world usability of the Yolo V12 detection system by guaranteeing 

replicability and easing improvements, in the future. 

 

7. Conclusions 

The study explored utilizing an object detection algorithm to spot potholes on roads by integrating a structure and 

adaptable anchor generation methods that yielded detection capabilities of 89%. Additionally, this model attained a 

precision rate of 91% and a recall rate of 88% surpass existing approaches and affirming Yolov12s dependability, for real 

world application. 

The specialized collection of data created from video recordings and meticulously annotated enabled the system to grasp 

a range of pothole variations better and enhance its ability to adapt to various road scenarios effectively. The process of 

training and assessing it with, in depth measurements like precision recall curves and confusion matrices verified its 

efficiency. Underscored its suitability for integration, into automated road upkeep setups . 

In contrast, to research that used YoloV9 and other conventional approaches along with YoloV12 combined with 

ESRGAN enhancement for YoloV9 exhibits outcomes especially in tough scenarios like changing light conditions and 

partial blockages occurred in the study could be seen as an advancement, in performance enhancing technology integration 

within the YoloV12 framework turning out to be quite beneficial . 

In projects researchers might consider broadening the data collection to cover types of road deterioration and 

implementing strategies to adapt to various geographical areas while also incorporating this model into instant monitoring 

setups using drones or edge devices; These improvements could strengthen YOLOv12s position, in sophisticated pothole 

detection and aid, in creating safer and more effective road maintenance systems. 
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