A Review of Artificial Intelligence Techniques for Medical Image Enhancement

Noor K. Younis, Mahmood Hameed Qahtan, Marwa Riyadh Ahmed
International Journal of Computational and Electronic Aspects in Engineering
Volume 6: Issue 2, June 2025, pp 98-107


Author's Information
Noor K. Younis 1 
Corresponding Author
1Artificial Intelligence Techniques Engineering, Northern Technical University, Mosul, Iraq
noorky@ntu.edu.iq

Mahmood Hameed Qahtan2
2Artificial Intelligence Techniques Engineering, Northern Technical University, Mosul, Iraq

Marwa Riyadh Ahmed3
3Artificial Intelligence Techniques Engineering, Northern Technical University, Mosul, Iraq

Review Paper -- Peer Review
First online on – 15 June 2025

Open Access article under Creative Commons License

Cite this article –Noor K. Younis, Mahmood Hameed Qahtan, Marwa Riyadh Ahmed, “A Review of Artificial Intelligence Techniques for Medical Image Enhancement ”, International Journal of Computational and Electronic Aspects in Engineering, RAME Publishers, vol. 6, Issue 2, pp. 98-107, 2025.
https://doi.org/10.26706/ijceae.6.2.20250406


Abstract:-
Medical imaging plays a crucial role in diagnosis, treatment planning, and monitoring of diseases. However, ‎‎the quality of medical images is often compromised due to noise, low resolution, and artifacts. Recent ‎‎advancements in Artificial Intelligence (AI), particularly deep learning techniques, have significantly ‎‎improved image enhancement capabilities in the medical domain. This paper comprehensively reviews AI-‎based image enhancement methods applied to medical imaging. We discuss ‎various enhancement ‎techniques, including denoising, super-resolution, contrast enhancement, and artifact ‎removal. Additionally, ‎we provide an overview of commonly used datasets, evaluation metrics, and recent ‎developments in AI ‎models such as convolutional neural networks (CNNs), generative adversarial networks ‎‎(GANs), and ‎transformer-based architectures. Finally, we highlight current challenges.
Index Terms:-
Medical Imaging, Image Enhancement, Artificial Intelligence, Deep Learning, CNN, GAN
REFERENCES
  1. G. Litjens et al., “A survey on deep learning in medical image analysis,” Med. Image Anal., vol. 42, no. December 2012, pp. 60–88, 2017, doi: 10.1016/j.media.2017.07.005.

  2. M. Khouy, Y. Jabrane, M. Ameur, and A. Hajjam El Hassani, “Medical Image Segmentation Using Automatic Optimized U-Net Architecture Based on Genetic Algorithm,” J. Pers. Med., vol. 13, no. 9, 2023, doi: 10.3390/jpm13091298.

  3. M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges,” J. Digit. Imaging, vol. 32, no. 4, pp. 582–596, 2019, doi: 10.1007/s10278-019-00227-x.

  4. Xiangbin Liu, Liping Song, Shuai Liu and Yudong Zhang, “A Review of Deep-Learning-Based Medical Image Segmentation Methods,” journal/sustainability, pp. 1–29, 2020, doi: 10.1201/9781351228343.

  5. S. K. M. S. Islam, M. A. Al Nasim, I. Hossain, D. M. A. Ullah, D. K. D. Gupta, and M. M. H. Bhuiyan, “Introduction of Medical Imaging Modalities,” Data Driven Approaches Med. Imaging, pp. 1–25, 2023, doi: 10.1007/978-3-031-47772-0_1.

  6. D. Kumar, B. Pratap, N. Boora, R. Kumar, and N. K. Sah, “A comparative study of medical imaging modalities,” Int. J. Radiol. Sci., vol. 3, no. 1, pp. 9–16, 2021, doi: 10.33545/26649810.2021.v3.i1a.11.

  7. T. M. Deserno, Fundamentals of Biomedical Image Processing. 2011. doi: 10.1107/978-3-642-15816-2_1.

  8. S. Liu et al., “Deep Learning in Medical Ultrasound Analysis: A Review,” Engineering, vol. 5, no. 2, pp. 261–275, 2019, doi: 10.1016/j.eng.2018.11.020.

  9. V. Balaji, T. A. Song, M. Malekzadeh, P. Heidari, and J. Dutta, “Artificial Intelligence for PET and SPECT Image Enhancement,” J. Nucl. Med., vol. 65, no. 1, 2024, doi: 10.2967/jnumed.122.265000.

  10. O. A. A. Kifaa Hadi Thanon, Abdulwahhab fathee shreef, “Digital Processing and Deep Learning Techniquse:A review of literature,” NTU J. Eng. Technol., vol. 1, 2022.

  11. A. W. Talab, N. K. Younis, and M. R. Ahmed, “Analysis Equalization Images Contrast Enhancement and Performance Measurement,” OALib, vol. 11, no. 04, pp. 1–11, 2024, doi: 10.4236/oalib.1111388.

  12. G. Qi, Z. Zhu, K. Li, and H. Xiao, “Advancements and Challenges in Medical Image Segmentation : A Comprehensive Survey,” 2025.

  13. A. BenHajyoussef and A. Saidani, “Recent advances on Image edge detection,” Digit. Image Process. - Latest Adv. Appl., 2024, doi: 10.5772/intechopen.1003763.

  14. M. Kaliyamoorthi, “A Review of Image Classification Approaches and Techniques,” no. March, 2020, doi: 10.23883/IJRTER.2017.3033.XTS7Z.

  15. N. Waisi, “Deep Feature Fusion Method for Images Classification,” Int. J. Comput. Electron. Asp. Eng., vol. 5, no. 4, pp. 148–153, 2024.

  16. A. Azizi, M. Azizi, and M. Nasri, “Artificial Intelligence Techniques in Medical Imaging: A Systematic Review,” Int. J. online Biomed. Eng., vol. 19, no. 17, pp. 66–97, 2023, doi: 10.3991/ijoe.v19i17.42431.

  17. F. Pesapane, M. Codari, and F. Sardanelli, “Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine,” Eur. Radiol. Exp., vol. 2, no. 1, 2018, doi: 10.1186/s41747-018-0061-6.

  18. A. E. Ezugwu et al., “Classical Machine Learning: Seventy Years of Algorithmic Learning Evolution,” Data Intell., 2024, doi: 10.3724/2096-7004.di.2024.0051.

  19. E. Karypidis, S. G. Mouslech, K. Skoulariki, and A. Gazis, “Comparison Analysis of Traditional Machine Learning and Deep Learning Techniques for Data and Image Classification,” WSEAS Trans. Math., vol. 21, pp. 122–130, 2022, doi: 10.37394/23206.2022.21.19.

  20. A. M. Hadi, “Enhancing MRI Brain Tumor Classification with a Novel Hybrid PCA + RST Feature Selection Approach : Methodology and Comparative Analysis,” Int. J. Comput. Electron. Asp. Eng., vol. 5, no. 3, pp. 113–123, 2024.

  21. M. M. Taye, “Understanding of Machine Learning with Deep Learning :,” Comput. MDPI, vol. 12, no. 91, pp. 1–26, 2023.

  22. L. Ruiz and R. Vargas, “Deep Learning: Previous and Present Applications,” J. Aware., vol. 2, no. November 2017, p. 11,13, 2017.

  23. N. F. Hordri, S. S. Yuhaniz, and S. M. Shamsuddin, “Deep Learning and Its Applications: A Review,” no. May 2017, 2016.

  24. R. Vargas, A. Mosavi, R. Ruiz, and S. Engineering, “DEEP LEARNING : A REVIEW,” no. October, 2018, doi: 10.20944/preprints201810.0218.v1.

  25. I. H. Sarker, “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions,” SN Comput. Sci., vol. 2, no. 6, pp. 1–20, 2021, doi: 10.1007/s42979-021-00815-1.

  26. P. Rajendra Kumar, S. Ravichandran, and N. Satyala, “Deep Learning Analysis: A Review,” Asian J. Comput. Sci. Technol., vol. 7, no. S1, pp. 24–28, 2018, doi: 10.51983/ajcst-2018.7.s1.1811.

  27. M. Trigka and E. Dritsas, “A Comprehensive Survey of Deep Learning Approaches in Image Processing,” Sensors, vol. 25, no. 2, 2025, doi: 10.3390/s25020531.

  28. R. Archana and P. S. E. Jeevaraj, Deep learning models for digital image processing: a review, vol. 57, no. 1. Springer Netherlands, 2024. doi: 10.1007/s10462-023-10631-z.

  29. F. Altaf, S. M. S. Islam, N. Akhtar, and N. K. Janjua, “Going deep in medical image analysis: Concepts, methods, challenges, and future directions,” IEEE Access, vol. 7, no. February, pp. 99540–99572, 2019, doi: 10.1109/ACCESS.2019.2929365.

  30. J. Egger et al., “Medical deep learning—A systematic meta-review,” Comput. Methods Programs Biomed., vol. 221, p. 106874, 2022, doi: 10.1016/j.cmpb.2022.106874.

  31. M. Akazawa and K. Hashimoto, “Artificial intelligence in gynecologic cancers: Current status and future challenges – A systematic review,” Artif. Intell. Med., vol. 120, no. September, p. 102164, 2021, doi: 10.1016/j.artmed.2021.102164.

  32. K. P. Extension, “The Use of AI in Enhancing Medical Imaging The Use of AI in Enhancing Medical Imaging,” no. September, 2024, doi: 10.59298/ROJPHM/2024/322629.

  33. A. F. Khalifa and E. Badr, “Deep Learning for Image Segmentation: A Focus on Medical Imaging,” Comput. Mater. Contin., vol. 75, no. 1, pp. 1995–2024, 2023, doi: 10.32604/cmc.2023.035888.

  34. S. I. Hamad, “Utilizing Convolutional Neural Networks for the Identification of Lung Cancer,” Int. J. Comput. Electron. Asp. Eng., vol. 6, no. 1, pp. 35–41, 2025.

  35. C. Ghandour, W. El-Shafai, and S. El-Rabaie, “Medical image enhancement algorithms using deep learning-based convolutional neural network,” J. Opt., vol. 52, no. 4, pp. 1931–1941, 2023, doi: 10.1007/s12596-022-01078-6.

  36. W. El-Shafai, C. Ghandour, and S. El-Rabaie, “Improving traditional method used for medical image fusion by deep learning approach-based convolution neural network,” J. Opt., vol. 52, no. 4, pp. 2253–2263, 2023, doi: 10.1007/s12596-023-01123-y.

  37. A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, “Deep learning for visual understanding: Part 2 generative adversarial networks,” IEEE Signal Process. Mag., no. January, pp. 53–65, 2018.

  38. J. M. Wolterink, A. M. Dinkla, M. H. F. Savenije, P. R. Seevinck, C. A. T. van den Berg, and I. Išgum, “Deep MR to CT synthesis using unpaired data,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10557 LNCS, no. November, pp. 14–23, 2017, doi: 10.1007/978-3-319-68127-6_2.

  39. K. Rais, M. Amroune, A. Benmachiche, and M. Y. Haouam, “EXPLORING VARIATIONAL AUTOENCODERS FOR MEDICAL IMAGE GENERATION : A COMPREHENSIVE STUDY,” pp. 1–5, 2024.

  40. A. Teli, “Uncover This Tech Term : Variational Autoencoders,” vol. 26, no. 6, pp. 616–619, 2025.

  41. J. H. Bang et al., “CA-CMT: Coordinate Attention for Optimizing CMT Networks,” IEEE Access, vol. 11, pp. 76691–76702, 2023, doi: 10.1109/ACCESS.2023.3297206.

  42. A. Dosovitskiy et al., “an Image Is Worth 16X16 Words: Transformers for Image Recognition At Scale,” ICLR 2021 - 9th Int. Conf. Learn. Represent., 2021.

  43. M. Li, Y. Jiang, Y. Zhang, and H. Zhu, “Medical image analysis using deep learning algorithms,” Front. Public Heal., vol. 11, no. November, pp. 1–28, 2023, doi: 10.3389/fpubh.2023.1273253.

  44. M. H. G. Abdkhaleq, “Hybrid Deep Learning and Neuro-Fuzzy Approach for COVID-19 Diagnosis Using CT Scan Imaging : Integration of CNN , ANFIS , and PCA,” Int. J. Comput. Electron. Asp. Eng., vol. 6, no. 2, pp. 81–88, 2025.

  45. R. Yulvina et al., “Hybrid Vision Transformer and Convolutional Neural Network for Multi-Class and Multi-Label Classification of Tuberculosis Anomalies on Chest X-Ray,” Computers, vol. 13, no. 12, pp. 1–29, 2024, doi: 10.3390/computers13120343.

  46. N. Waisi, “Comparative Evaluation of Resnet-50 and Efficientnet- B1 for Pneumonia Detection in Chest X-Ray Images Using Transfer Learning,” Int. J. Comput. Electron. Asp. Eng., vol. 6, no. 2, pp. 89–97, 2025.

  47. A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017, doi: 10.1038/nature21056.

  48. E. R. Ranschaert, S. Morozov, and P. R. Algra, Artificial intelligence in medical imaging: Opportunities, applications and risks. 2019. doi: 10.1007/978-3-319-94878-2.

  49. P. Rajpurkar et al., “Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists,” PLoS Med., vol. 15, no. 11, pp. 1–17, 2018, doi: 10.1371/journal.pmed.1002686.

  50. R. Najjar, “Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging,” Diagnostics, vol. 13, no. 17, 2023, doi: 10.3390/diagnostics13172760.

  51. J. Stephenson, “AI in Medical Imaging Advancements, Applications, and Challenges,” vol. 15, pp. 84–86, 2023, doi: 10.37532/1755-these.

  52. L. M. Prevedello et al., “Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions,” Radiol. Artif. Intell., vol. 1, no. 1, 2019, doi: 10.1148/ryai.2019180031.



  53. To view full paper, Download here


Publishing with