New Design of a Triple-Band Antenna for Controlling Radiation Patterns in Half-Width Microstrip Leaky Wave Antennas

Mowafak K. Mohsen
Journal of Production and Industrial Engineering
Volume 5: Issue 1, Jan-June 2024, pp 38-45


Author's Information
Mowafak K. Mohsen 1 
Corresponding Author
1College of Computer Science and Information Technology, University of Kerbala, Iraq.
mowafak.k@uokerbala.edu.iq

Article -- Peer Reviewed
Published online – 30 June 2024

Open Access article under Creative Commons License

Cite this article – Mowafak K. Mohsen,“New Design of a Triple-Band Antenna for Controlling Radiation Patterns in Half-Width Microstrip Leaky Wave Antennas”, Journal of Production and Industrial Engineering, RAME Publishers, vol. 5, Issue 1, pp. 38-45, 2024.
https://doi.org/10.26706/jpie.5.1.20244042

Abstract:
A uniform half-width microstrip leaky wave antenna (HW-MLWA) featuring a single slot near the port is presented. This antenna operates across three frequency bands and can control the radiation pattern of the main beam in boresight directions by adjusting the operating frequency. The scanning angles for the main beam range from 13° to 38°, 41° to 48°, and 51° to 55° as the operating frequency sweeps through 4.15 to 4.75 GHz, 4.85 to 5.15 GHz, and 5.4 to 5.65 GHz, respectively. The maximum gains during the main beam scanning for the first, second, and third bands are 9.92 dBi, 9.2 dBi, and 8.6 dBi, with a maximum gain variation of 2.1 dB across all bands.
Index Terms:
LWA; HW-MLWA; Control Radiation Pattern; Triple Band; Gain Variation
REFERENCES

  1. Abdulhameed M. K., et al. Radiation control of microstrip patch antenna by using electromagnetic band gap. International Journal of Electronics and Communications (AEÜ). 2019; 110 (2019) 152835: 1-11.

  2. Sarker, R., M. Islam, T. Alam, and G. C. M. Hossam. Side Lobe Level Reduction in Antenna Array Using Weighting Function. Int. Conf. Electr. Eng. Inf. Commun. Technol. 2014; 23(4): 403–415.

  3. Alexópoulos, N. G. and D. R. Jackson. Fundamental Superstrate (Cover) Effects on Printed Circuit Antennas. IEEE Trans. Antennas Propag. 1984; 32(8): 807–816.

  4. Jackson, D. R. J. T., Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheit, and S. A. Long. Microstrip Patch Designs That Do Not Excite Surface Waves. IEEE Trans. Antennas Propag. 1993; 41(8): 1026–1037.

  5. Yook J.G. and B. Katehi. Micromachined microstrip patch antenna with controlled mutual coupling and surface waves. IEEE Trans. Antennas Propag. 2001; 49(9): 1282–1289.

  6. M. K. Mohsen, M. S. M. Isa, T. A. Rahman, M. K. Abdulhameed, A. A. M. Isa, and M. S. I. M. Z. S. Saat, “Novel Design and Implementation of MIMO Antenna for LTE Application,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 2, pp. 43–49, 2018.

  7. M. K. Mohsen et al., “The Fundamental of Leaky Wave Antenna,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 1, pp. 119–127, 2018.

  8. Abdulhameed MK, Isa MSM, Ibrahim IM, Zin MSIM, Zakaria Z, Mohsin MK. Review of Radiation Pattern Control Characteristics for The Microstrip Antenna Based On Electromagnetic Band Gap (EBG ). J Telecommun Electron Comput Eng. 2018; 10(3): 129–40.

  9. Islam M. T. and M. S. Alam. Compact Ebg Structure for Alleviating Mutual Coupling Between Patch Antenna Array Elements. Prog. Electromagn. Res. 2013; 13(7): 425–438.

  10. Abdulhameed MK, Isa MSM, Z.Zakaria IMI, Mohsin MK. Controlling The Radiation Pattern of Patch Antenna Using Switchable EBG. TELKOMNIKA Telecommunication Comput Electron Control. 2018; 16(5): 2014–22.

  11. Zong B., G. Wang, C. Zhou, and Y. Wang. Compact Low-Pro fi le Dual-Band Patch Antenna Using Novel TL-MTM Structures. IEEE ANTENNAS Wirel. Propag. Lett. 2015; 14(3):567–570.

  12. Abdulhameed MK, Isa MSM, Z.Zakaria, K.Mohsin M, Attiah ML. Mushroom-Like EBG to Improve Patch Antenna Performance For C-Band Satellite Application. Int J Electr Comput Eng. 2018; 8(5): 3875-3881.

  13. Abdulhameed MK, Isa MSM, Ibrahim IM, Mohsin MK. Improvement of Microstrip Antenna Performance on Thick and High Permittivity Substrate with Electromagnetic Band Gap. Jour Adv Res Dyn Control Syst. 2018; 10(4): 661–9.

  14. Mohsin MK , MSM Isa, AAM Isa, MK Abdulhameed, ML Attiah, AM Dinar. Enhancement of boresight radiation for leaky wave antenna array. TELKOMNIKA (Telecommunication Comput. Electron. Control. 2019; 17 (5), 2179-2185.

  15. Dinar AM, ASM Zain, F Salehuddin, MK Mohsen, ML Attiah. Performance analysis of high-k materials as stern layer in ion-sensitive field effect transistor using commercial TCAD. TELKOMNIKA (Telecommunication Comput. Electron. Control. 2019; 17 (6), 1179-1185.

  16. Dinar AM, ASM Zain, F Salehuddin, MK Mohsen, ML Attiah. Impact of Gouy-Chapman-Stern model on conventional ISFET sensitivity and stability. TELKOMNIKA (Telecommunication Comput. Electron. Control. 2019; 17 (6).

  17. Muhannad K, Isa MSM, Ibrahim IM, Mohsin MK. Enhanced performance of compact 2× 2 antenna array with electromagnetic band‐gap. Microw Opt Technol Lett. 2020; 62 (2): 875-886.

  18. Jin N., A. Yu, and X. Zhang. An Enhanced 2x2 Antenna Array Based on A duumbbell EBG Structure. Microw Opt Technol Lett. 2003; 39 (5): 395–399.

  19. Jiao T., T. Jiang, Y. Li, and X. Mao. A low mutual coupling MIMO antenna array with periodic crossing electromagnetic band gap. Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL); 2017, pp. 279–283.

  20. Elsheakh D. and M. F. Iskander, E. A. A. and H. A. E. Hawaii. Microstrip array antenna with new 2D-Electromagnetic band gap structure shapes to reduce harmonics and mutual coupling. 5[ 2010; 12(5): 203–213.

  21. Abdulhameed MK, Isa MSM, Z.Zakaria, K.Mohsin M, Attiah ML. Side lobe reduction in array antenna by using novel design of EBG. Int J Electr Comput Eng. 2020; 10(1): 308-315.

  22. Karaaslan M., E. Unal, E. Tetik, K. Delihacioglu, F. Karadag, and F. Dincer. Low profile antenna radiation enhancement with novel electromagnetic band gap structures. IET Microwaves, Antennas Propag. 2013; 7 (3):215–221.

  23. Abdulhameed M. K., M. S. M. Isa, Z. Zakaria, I. M. Ibrahim, and M. K. Mohsin. Radiation Pattern Control of Microstrip Antenna in Elevation and Azimuth Planes Using EBG and Pin Diode. Int. J. Electr. Comput. Eng. 2019; 9 (1): 332-340.

  24. Abdulhameed M. K., M. S. M. Isa, Z. Zakaria, I. M. Ibrahim, M. K. Mohsen, and A. M. Dinar. Novel design of triple bands EBG. TELKOMNIKA (Telecommunication Comput. Electron. Control. 2019; 17 (4); 1683-1691.

  25. S. A. Bugade and A. D. Diwate, "Analysis and optimization of EDM process parameters using Taguchi method for AISI 304," J. Prod. Ind. Eng., vol. 1, no. 1, pp. 12-22, Aug. 2020. [Online]. Available: https://doi.org/10.26706/jpie.1.1.20200606

  26. N. C. Kanojiya, "Design and implementation strategies of 5S in industry," J. Prod. Ind. Eng., vol. 2, no. 1, pp. 8-12, Mar. 2021. [Online]. Available: https://doi.org/10.26706/jpie.2.1.20210103

  27. O. J. Dagwa, "Examining the environmental facilities on residents’ gratification in government estates - A case study of Borno State, Nigeria," J. Prod. Ind. Eng., vol. 2, no. 1, pp. 1-7, Jan. 2021. [Online]. Available: https://doi.org/10.26706/jpie.2.1.20200707

  28. S. P. Kadu and P. S. Patil, "UAV (unmanned aerial vehicle) for agriculture application- A state-of-the-art review," J. Prod. Ind. Eng., vol. 2, no. 2, pp. 61-67, Dec. 2021. [Online]. Available: https://doi.org/10.26706/jpie.2.2.20211206


  29. To view full paper, Download here


Publishing with