A Review on Electrospun Nanofibers for Air Pollution Control

Nand Jee Kanu and Subodh Mahadeo Kale
Volume 7: Issue 1, April 2020, pp 9-18

Author's Information
Nand Jee Kanu1 
Corresponding Author
1Department of Mechanical Engineering, JSPM Narhe Technical Campus, Pune, Maharashtra, India.

Subodh Mahadeo Kale2
2Department of Mechanical Engineering, JSPM Narhe Technical Campus, Pune, Maharashtra, India.

Review Article -- Peer Reviewed
Published online – 10 April 2020

Open Access article under Creative Commons License

Cite this article – Nand Jee Kanu and Subodh Mahadeo Kale, “A Review on Electrospun Nanofibers for Air Pollution Control”, International Journal of Analytical, Experimental and Finite Element Analysis, RAME Publishers, vol. 7, issue 1, pp. 9-18, April 2020.

These days air pollution has emerge as greater severe and commenced to have a dramatic impact at the fitness of people in many big towns. Usually, out of doors personal protection, together with commercial masks cannot successfully save you the inhalation of much pollution. Specific remember (PM) pollutants are specially a critical risk to human fitness. Here we introduce a brand-new green air filtration materials and methodologies that can be used for outside in addition to in Indoor air filtration. Sub-microfibers and nanofibers membranes have an excessive surface to extent ratio which makes them suitable for diverse programs such as environmental remediation and filtration, strength production and garage, digital optical sensors, tissue engineering and drug shipping. The fast file affords an outline of cutting-edge situation of nanofibers produced using electrospinning approach and the one-of-a-kind polymers used for the manufacturing of nanofibers and the improvement procedures.
Index Terms:-
polyacrylonitrile (PAN):TiO2, polyacrylonitrile-Co-polyacrylate (PAN-Co-PMA):TiO2, [email protected] filters.
  1. C. Zimm, J. Auringer, A. Boeder, J. Chell, S. Russek, and A. Sternberg
    Design and initial performance of a magnetic refrigerator with a rotating permanent magnet
    Proc.Int. Conf. Magn. Refrig. Room Temp. Portoroz, Slov., no. April, pp. 341-347, 2007.

  2. V. K. Pecharsky, J. Cui, and D. D. Johnson
    (Magneto)caloric refrigeration: is there light at the end of the tunnel?
    Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 374, no. 2074, p. 20150305, Aug. 2016.
  3. C. Aprea, A. Greco, A. Maiorino, and C. Masselli
    Magnetic refrigeration: An eco-friendly technology for the refrigeration at room temperature
    Journal of Physics: Conference Series, 2015, vol. 655, no. 1.
  4. A. Kitanovski and P. W. Egolf
    Thermodynamics of magnetic refrigeration
    International Journal of Refrigeration, vol. 29, no. 1. Elsevier, pp. 3-21, Jan. 01, 2006.
  5. Y. Lei, K. Liu, L. Hou, L. Ding, Y. Li, and L. Liu
    Small chaperons and autophagy protected neurons from necrotic cell death
    Sci. Rep., vol. 7, no. 1, pp. 1-13, Dec. 2017.
  6. J. Liang, C. D. Christiansen, K. Engelbrecht, K. K. Nielsen, R. Bjørk, and C. R. H. Bahl
    Characterization of Freeze-Cast Micro-Channel Monoliths as Active and Passive Regenerators
    Front. Energy Res., vol. 8, no. April, 2020.
  7. B. Monfared and B. Palm
    Material requirements for magnetic refrigeration applications
    Int. J. Refrig., vol. 96, pp. 25-37, Dec. 2018.
  8. K. K. Nielsen, K. Engelbrecht, and C. R. H. Bahl
    The influence of flow maldistribution on the performance of inhomogeneous parallel plate heat exchangers
    Int. J. Heat Mass Transf., vol. 60, no. 1, pp. 432-439, May 2013.
  9. R. Kajimoto et al.,
    Hole-concentration-induced transformation of the magnetic and orbital structures in Nd1-xSrxMnO3
    Phys. Rev. B - Condens. Matter Mater. Phys., vol. 60, no. 13, pp. 9506-9517, Oct. 1999.
  10. H. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, H. Kuwahara, and Y. Tokura,
    Magnetic ordering and relation to the metal-insulator transition in Pr1 - xSrxMnO3 and Nd1 - xSrxMnO3 with x ∼ 1/2
    Phys. Rev. Lett., vol. 78, no. 22, pp. 4253-4256, Jun. 1997.
  11. C. Ritter and R. Mahendiran
    Direct evidence of phase segregation and magnetic-field-induced structural transition in by neutron diffraction
    Phys. Rev. B - Condens. Matter Mater. Phys., vol. 61, no. 14, pp. R9229-R9232, Apr. 2000.
  12. J. P. Joshi, A. K. Sood, S. V. Bhat, S. Parashar, A. R. Raju, and C. N. R. Rao
    An electron paramagnetic resonance study of phase segregation in Nd 0.5Sr0.5MnO3
    J. Magn. Magn. Mater., vol. 279, no. 1, pp. 91-102, Aug. 2004.
  13. V. T. Dovgii et al.
    Anomalous magnetic susceptibility in Nd0.5Sr 0.5MnO3 manganite single crystals
    Tech. Phys. Lett., vol. 34, no. 12, pp. 1044-1046, Dec. 2008.
  14. J. Geck et. al.,
    Anisotropic CE-type orbital correlations in the ferromagnetic metallic phase of (formula presented)
    Phys. Rev. B - Condens. Matter Mater. Phys., vol. 66, no. 18, pp. 1-8, Nov. 2002.
  15. I. A. Abdel-Latif and M. R. Ahmed
    Use of Magnetocaloric Material for Magnetic Refrigeration System: A Review
    Mater. Sci. Res. India, vol. 16, no. 3, pp. 209-224.
  16. S. E. Naleway, J. R. A. Taylor, M. M. Porter, M. A. Meyers, and J. McKittrick
    Structure and mechanical properties of selected protective systems in marine organisms
    Materials Science and Engineering C, vol. 59. Elsevier Ltd, pp. 1143-1167, Feb. 01, 2016.
  17. M. Kaviany
    Principles of Heat Transfer in Porous Media
    Mech. Eng. Ser., vol. 53, no. 9, p. 726, 1995.
  18. C. Zimm et al.,
    Description and Performance of a Near-Room Temperature Magnetic Refrigerator
    Advances in Cryogenic Engineering, RAMEPublishers US, 1998, pp. 1759–1766.
  19. L. A. Tagliafico, F. Scarpa, F. Canepa, and S. Cirafici
    Performance analysis of a room temperature rotary magnetic refrigerator for two different gadolinium compounds
    Int. J. Refrig., vol. 29, no. 8, pp. 1307–1317, 2006.
  20. B. R. Dorin, J. Avsec, and A. Plesca
    The Efficiency Of Magnetic Refrigeration And A Comparison With Compressor Refrigeration Systems
    2018. Accessed: May 26, 2020.
  21. M. Almanza, A. Kedous-Lebouc, J. P. Yonnet, U. Legait, and J. Roudaut
    Magnetic refrigeration: Recent developments and alternative configurations
    EPJ Appl. Phys., vol. 71, no. 1, 2015.
  22. A. P. Garole, A. B. More, and G. P. Jarad
    Analysis of Factors Influencing Time Overrun in Build Operate Transfer Infrastructure Projects: A Case Study on BOT Road Project in Maharashtra
    Int. Res. J. Eng. Technol., 2016, Accessed: May 26, 2020..
  23. V. Franco, J. S. Blázquez, B. Ingale, and A. Conde
    The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models
    Annu. Rev. Mater. Res., vol. 42, no. 1, pp. 305–342, Aug. 2012.
  24. E. Brück
    Developments in magnetocaloric refrigeration
    Journal of Physics D: Applied Physics, vol. 38, no. 23. 2005.
  25. A. Taubel et al.,
    A Comparative Study on the Magnetocaloric Properties of Ni-Mn-X(-Co) Heusler Alloys
    Phys. status solidi, vol. 255, no. 2, p. 1700331, Feb. 2018.
  26. J. D. Moore et al.,
    Metamagnetism Seeded by Nanostructural Features of Single-Crystalline Gd 5 Si 2 Ge 2
    Adv. Mater., vol. 21, no. 37, pp. 3780–3783, Oct. 2009.
  27. V. K. Pecharsky and K. A. Gschneidner
    Giant magnetocaloric effect in Gd5 (Si2 Ge2)
    Phys. Rev. Lett., vol. 78, no. 23, pp. 4494–4497, Jun. 1997.
  28. A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi
    Itinerant-electron metamagnetic transition and large magnetocaloric effects in (formula presented) compounds and their hydrides
    Phys. Rev. B - Condens. Matter Mater. Phys., vol. 67, no. 10, p. 12, Mar. 2003.
  29. J. Lyubina, K. Nenkov, L. Schultz, and O. Gutfleisch
    Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx
    Phys. Rev. Lett., vol. 101, no. 17, p. 177203, Oct. 2008.
  30. H. Wada, K. Taniguchi, and Y. Tanabe
    Extremely Large Magnetic Entropy Change of MnAs 1−x Sb x near Room Temperature
  31. O. Tegus, E. Brück, K. H. J. Buschow, and F. R. De Boer
    Transition-metal-based magnetic refrigerants for room-temperature applications
    Nature, vol. 415, no. 6868, pp. 150-152, Jan. 2002.
  32. Y. Sutou et al.,
    Magnetic and martensitic transformations of NiMnX(X=In, Sn, Sb) ferromagnetic shape memory alloys
    Applied Physics Letters, Nov. 2004, vol. 85, no. 19, pp. 4358-4360.
  33. J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gutfleisch
    Giant magnetocaloric effect driven by structural transitions
    Nat. Mater., vol. 11, no. 7, pp. 620–626, May 2012.
  34. A. Planes, L. Mãosa, and M. Acet
    Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys
    J. Phys. Condens. Matter, vol. 21, no. 23, 2009.
  35. P. Devi et al.,
    Adaptive modulation in Ni2Mn1.4In0.6 magnetic shape memory Heusler alloy
    Phys. Rev. B, vol. 97, no. 22, Nov. 2016.
  36. M. G. Zavareh et al.,
    Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni$_{50}$Mn$_{35}$In$_{15}$
    Appl. Phys. Lett., vol. 106, no. 7, Jan. 2015.
  37. T. Gottschall, K. P. Skokov, B. Frincu, and O. Gutfleisch
    Large reversible magnetocaloric effect in Ni-Mn-In-Co
    Appl. Phys. Lett., vol. 106, no. 2, p. 021901, Jan. 2015.
  38. L. Caron et al.,
    Effect of Pt substitution on the magnetocrystalline anisotropy of Ni2MnGa: A competition between chemistry and elasticity
    Phys. Rev. B, vol. 96, no. 5, p. 054105, Aug. 2017.
  39. S. R. Barman et al.,
    Theoretical prediction and experimental study of a ferromagnetic shape memory alloy: Ga2MnNi
    Phys. Rev. B - Condens. Matter Mater. Phys., vol. 78, no. 13, p. 134406, Oct. 2008.
  40. V. V. Khovaylo et al.,
    Peculiarities of the magnetocaloric properties in Ni-Mn-Sn ferromagnetic shape memory alloys
    Phys. Rev. B - Condens. Matter Mater. Phys., vol. 81, no. 21, p. 214406, Jun. 2010.
  41. V. V. Khovaylo et al.,
    Magnetic properties of Ni50 Mn34.8 In15.2 probed by Mössbauer spectroscopy
    Phys. Rev. B - Condens. Matter Mater. Phys., vol. 80, no. 14, p. 144409, Oct. 2009.
  42. T. Gottschall et al.,
    Dynamical Effects of the Martensitic Transition in Magnetocaloric Heusler Alloys from Direct Δtad Measurements under Different Magnetic-Field-Sweep Rates
    Phys. Rev. Appl., vol. 5, no. 2, p. 024013, Feb. 2016.

To view full paper, Download here .

To View Full Paper

Publishing with

About this journal

2394-5133 (Print)
2394-5141 (Online)
Abstracted and Indexed in
  1. Crossref.com
  2. Index Copernicus
  3. Academia.edu
  4. Google Scholar
  5. J-Gate
  6. Advanced Science Index
  7. Research Bible
  8. ROAD
  9. DRJI
  10. Research Gate
  11. Scilit
  12. EuroPub