Performance Comparison of Low-Voltage non-Ionic Gel Organic Field Effect Transistors with Gold and PEDOT:PSS Gate Electrodes

T.Yardım, İ. Yücedağ, S. Allı, A. Allı, and A. Kösemen
Volume 7: Issue 4, Dec 2020, pp 101-108


Author's Information
T. Yardım1 
Corresponding Author
1Scientific and Technological Center, Düzce University, Düzce, Turkey

İ. Yücedağ2
2Department of Computer Engineering, Düzce University Technology Faculty, Düzce, Turkey

S. Allı3
3Department of Polymer Engineering, Düzce University Technology Faculty, Düzce, Turkey

A. Allı4
4Department of Chemistry, Düzce University Faculty of Arts and Sciences, Düzce,Turkey

A. Kösemen5
5Department of Physics, Muş Alparslan University Faculty of Arts and Sciences, Muş, Turkey

Research Article -- Peer Reviewed
Published online – 19 December 2020

Open Access article under Creative Commons License

Cite this article – T.Yardım, İ. Yücedağ, S. Allı, A. Allı, A. Kösemen “Performance Comparison of Low-Voltage non-Ionic Gel Organic Field Effect Transistors with Gold and PEDOT:PSS Gate Electrodes”, International Journal of Analytical, Experimental and Finite Element Analysis, RAME Publishers, vol. 7, issue 4, pp. 101-108, Dec 2020.
https://doi.org/10.26706/ijaefea.4.7.20200808


Abstract:-
Low-voltage non-ionic gel organic-field effect transistors (NIGOFETs) with two kinds of gate electrode materials namely gold (Au) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) formulation were fabricated in top-gate bottom-contact geometry to investigate the effects of gate electrodes on the electrical performance of the OFETs. In addition, three kinds of gate dielectrics were used for both types of transistors to understand the effects more thoroughly. As a result, it can be deduced from the data that NIGOFETs with Au gate electrodes (Au-NIGOFETs) display better performance considering higher mobility and on-to-off current ratio (ION/IOFF) as well as lower Subthreshold Swing (SS) of them. Besides, the threshold voltage (VTH) effects-free drain currents (IDS) of the Au-NIGOFETs surpasses those of the PEDOT:PSS formulation gated NIGOFETs (Pedot-NIGOFETs). This is probably due to having greater WF gate electrode (in our case Au) provides less injection barrier eventually leads to relatively unimpeded charge transportation. Nevertheless, Au-NIGOFETs interestingly proves to have further negative VTH and lower off-current (IOFF), which may be attributed to lower electrical resistivity (ρ) of the Au leading to denser charge carrier traps formation along with intensified charge carrier induction at the semiconductor-dielectric interface when the gate-to-source voltage (VGS) is less than VTH. However, because of the same reason, when VGS exceeds the VTH for example, IDS of Au-NIFOFET1 starts to increase in such a quick manner that enabling it to have higher ION/IOFF and lower SS.
Index Terms:-
non-ionic gel organic-field effect transistor (NIGOFET), gate electrode, work function (WF), electrical resistivity (ρ) threshold voltage (VTH)
REFERENCES
  1. J. Lee, M. J. Panzer, Y. He, T. P. Lodge, and C. D. Frisbie, “Ion Gel Gated Polymer Thin-Film Transistors,” J. Am. Chem. Soc., vol. 129, no. 15, pp. 4532–4533, Apr. 2007.
                                                                                                                                                   Crossref


  2. F. Zare Bidoky and C. D. Frisbie, “Parasitic Capacitance Effect on Dynamic Performance of Aerosol-Jet-Printed Sub 2 V Poly(3-hexylthiophene) Electrolyte-Gated Transistors,” ACS Appl. Mater. Interfaces, vol. 8, no. 40, pp. 27012–27017, Oct. 2016.
                                                                                                                                                   Crossref


  3. M. J. Panzer and C. D. Frisbie, “Exploiting Ionic Coupling in Electronic Devices: Electrolyte-Gated Organic Field-Effect Transistors,” Adv. Mater., vol. 20, no. 16, pp. 3177–3180, Aug. 2008.
                                                                                                                                                   Crossref


  4. S. Ono, K. Miwa, S. Seki, and J. Takeya, “A comparative study of organic single-crystal transistors gated with various ionic-liquid electrolytes,” Appl. Phys. Lett., vol. 94, no. 6, p. 063301, Feb. 2009.
                                                                                                                                                   Crossref


  5. B. Yaman, I. Terkesli, K. M. Turksoy, A. Sanyal, and S. Mutlu, “Fabrication of a planar water gated organic field effect transistor using a hydrophilic polythiophene for improved digital inverter performance,” Org. Electron. physics, Mater. Appl., vol. 15, no. 3, pp. 646–653, Mar. 2014.
                                                                                                                                                   Crossref


  6. T. Yardım, A. Demir, S. Allı, A. Allı, A. Kösemen, and A. G. Yüceda, “Comparison of Electronic Parameters of Low Voltage Organic Field-Effect Transistors with Novel Gel Gate Insulators,” J. Nanoelectron. Optoelectron., vol. 14, no. 6, pp. 833–838, May 2019.
                                                                                                                                                   Crossref


  7. Z. Alpaslan Kösemen, A. Kösemen, S. Öztürk, B. Canımkurbey, and Y. Yerlİ, “High mobility and low operation voltage organic field effect transistors by using polymer-gel dielectric and molecular doping,” Mater. Sci. Semicond. Process., vol. 66, pp. 207–211, Aug. 2017.
                                                                                                                                                   Crossref


  8. B. Şengez et al., “Use of side chain thiophene containing copolymer as a non-ionic gel-dielectric material for sandwich OFET assembly,” Microelectron. Eng., vol. 103, pp. 111–117, Mar. 2013.
                                                                                                                                                   Crossref


  9. T. Yardım, İ. Yücedağ, S. Allı, A. Allı, A. Demir, and A. Kösemen, “Comparative investigation of electronic parameters of low voltage organic field-effect transistors with variable capacitance non-ionic gel gate dielectrics,” Microelectron. Eng., vol. 215, 2019.
                                                                                                                                                   Crossref


  10. A. Kösemen et al., “A novel field effect transistor with dielectric polymer gel,” Microelectron. Eng., vol. 88, no. 1, pp. 17–20, Jan. 2011.
                                                                                                                                                   Crossref


  11. F. Leonardi, A. Tamayo, S. Casalini, and M. Mas-Torrent, “Modification of the gate electrode by self-assembled monolayers in flexible electrolyte-gated organic field effect transistors: Work function: Vs. capacitance effects,” RSC Adv., vol. 8, no. 48, pp. 27509–27515, Aug. 2018.
                                                                                                                                                   Crossref


  12. S. Fabiano, S. Braun, M. Fahlman, X. Crispin, and M. Berggren, “Effect of Gate Electrode Work-Function on Source Charge Injection in Electrolyte-Gated Organic Field-Effect Transistors,” Adv. Funct. Mater., vol. 24, no. 5, pp. 695–700, Feb. 2014.
                                                                                                                                                   Crossref


  13. I. Nausieda, K. K. Ryu, D. Da He, A. I. Akinwande, V. Bulović, and C. G. Sodini, “Dual threshold voltage organic thin-film transistor technology,” IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 3027–3032, Nov. 2010.
                                                                                                                                                   Crossref


  14. L. Kergoat et al., “Tuning the threshold voltage in electrolyte-gated organic field-effect transistors,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 22, pp. 8394–8399, May 2012.
                                                                                                                                                   Crossref


  15. Y. Zhou, H. Cheun, S. Choi, C. Fuentes-Hernandez, and B. Kippelen, “Optimization of a polymer top electrode for inverted semitransparent organic solar cells,” Org. Electron. physics, Mater. Appl., vol. 12, no. 5, pp. 827–831, May 2011.
                                                                                                                                                   Crossref


  16. H. Jia, G. K. Pant, E. K. Gross, R. M. Wallace, and B. E. Gnade, “Gate induced leakage and drain current offset in organic thin film transistors,” Org. Electron., vol. 7, no. 1, pp. 16–21, 2006.
                                                                                                                                                   Crossref


  17. I. Kymissis, Organic Field Effect Transistors: Theory, Fabrication and Characterization - Ioannis Kymissis - Google Books. 2009.
                                                                                                                                                   Crossref


  18. W. M. H. Sachtler, G. J. H. Dorgelo, and A. A. Holscher, “The work function of gold,” Surf. Sci., vol. 5, no. 2, pp. 221–229, Oct. 1966.
                                                                                                                                                   Crossref


  19. “PEDOT:PSS | PH 1000, Al 4083, HTL Solar & HTL Solar 3 | Ossila.” Available:
                                                                                                                                                   Online


  20. S. I. Na et al., “Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells,” J. Mater. Chem., vol. 19, no. 47, pp. 9045–9053, 2009.
                                                                                                                                                   Crossref


  21. L. Xiang, W. Wang, and F. Gao, “Improving Mobility and Stability of Organic Field-Effect Transistors by Employing a Tetratetracontane Modifying PMMA Dielectric,” IEEE Trans. Electron Devices, vol. 63, no. 11, pp. 4440–4444, Nov. 2016.
                                                                                                                                                   Crossref


  22. L. Zhang, D. Yang, S. Yang, and B. Zou, “Solution-processed P3HT-based photodetector with field-effect transistor configuration,” Appl. Phys. A Mater. Sci. Process., vol. 116, no. 3, pp. 1511–1516, 2014.
                                                                                                                                                   Crossref


  23. G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, and M. Hajlaoui, “The Concept of ‘Threshold Voltage’ in Organic Field-Effect Transistors,” Adv. Mater., vol. 10, no. 12, pp. 923–927, Aug. 1998.
                                                                                                                                                   Crossref


  24. G. Fortunato and P. Migliorato, “Model for the above-threshold characteristics and threshold voltage in polycrystalline silicon transistors,” J. Appl. Phys., vol. 68, no. 5, pp. 2463–2467, 1990.
                                                                                                                                                   Crossref


  25. D. Braga and G. Horowitz, “Subthreshold regime in rubrene single-crystal organic transistors,” Appl. Phys. A Mater. Sci. Process., vol. 95, no. 1, pp. 193–201, Apr. 2009.
                                                                                                                                                   Crossref


  26. J. R. Sambles, K. C. Elsom, and D. J. Jarvis, “The Electrical Resistivity of Gold Films,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 304, no. 1486, pp. 365–396, Mar. 1982.
                                                                                                                                                   Crossref


  27. O. Günaydın, A. Demir, A. Atahan, T. Yardım, and İ. Yücedağ, “Evaluation of novel thiophene branched polystyrene as insulator layer in organic electronic device,” J. Mol. Struct., vol. 1185, 2019.
                                                                                                                                                   Crossref


  28. R. P. Ortiz, A. Facchetti, and T. J. Marks, “High- k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors,” Chem. Rev., vol. 110, no. 1, pp. 205–239, Jan. 2010.
                                                                                                                                                   Crossref


  29. To view full paper, Download here .


To View Full Paper

Publishing with