Modeling Cylindrical Dipole Antenna by Finite Element Method at 2400MHz

E. El Kennassi, K. Janati Idrissi, L. Bousshine
Volume 2: Issue 2, June 2015, pp 89-94


Author's Information
E. El Kennassi1 
Corresponding Author
1Laboratoire des Technologies de Construction et Systèmes Industriels (LTCSI), Mechanics Department, ENSEM, Hassan II University of Casablanca, Ain Chock, Casablanca, Morocco.
essaid.elkennassi@orange.fr

K. Janati Idrissi2
2Laboratoire des Technologies de Construction et Systèmes Industriels (LTCSI), Mechanics Department, ENSEM, Hassan II University of Casablanca, Ain Chock, Casablanca, Morocco.


L. Bousshine3
3Laboratoire des Technologies de Construction et Systèmes Industriels (LTCSI), Mechanics Department, ENSEM, Hassan II University of Casablanca, Ain Chock, Casablanca, Morocco.

Research Article -- Peer Reviewed
Published online – 30 June 2015

Open Access article under Creative Commons License

Cite this article – E. El Kennassi, K. Janati Idrissi, L. Bousshine “Modeling Cylindrical Dipole Antenna by Finite Element Method at 2400MHz”, International Journal of Analytical, Experimental and Finite Element Analysis, RAME Publishers, vol. 2, issue 2, pp. 89-94, June 2015.
ark:/13960/t9h51nk8c


Abstract:-
Finite element method is used for the electric field computation of a dipole antenna at the 2400 MHz frequency in the context of Dirichlet and absorbing boundary conditions. It shows that the electric field pattern, both in bi-dimensional and polar plots, has an omnidirectional property for the dipole antenna. Our results are compared against the method of moments with a good agreement.
Index Terms:-
finite element method, antennas, electromagnetic field, Galerkin, excitation, scattering problem, method of moments
REFERENCES
  1. A. C. Polycarpou, “Introduction to the finite element method in electromagnetics,” Synthesis Lectures on Computational Electromagnetics, vol. 1, no. 1, pp. 1-126, 2006.

  2. L. Bousshine, “The finite element method,” ENSEM Hassan II University, Casablanca, Morocco, unpublished.

  3. J. P. A. Bastos and N. Sadowski, “Electromagnetic modeling by finite element methods,” Marcel Dekker, Inc. 2003.

  4. E. El Kennassi and L. Bousshine, “The finite element method for electric field modeling near a cylinder,” [3ème Edition du Workshop Modélisation Mathématique, Informatique et Analyse numérique, Errachidia, Morocco, 2015].

  5. J. Jin, “The finite element method in electromagnetics,” John Wiley and Sons, Inc. Second Edition, 2002.

  6. C. A. Balanis, “Modern antenna handbook,” John Wiley and Sons, Inc. 2008.

  7. M. N. O. Sadiku, “Numerical techniques in electromagnetics second edition,” CRC Press LLC, 2011.

  8. 4NEC2, “American wire gauge table”.

  9. A. F. Peterson, “Absorbing boundary conditions for the vector wave equation,” Microwave and Optical Technology letters, vol. 1, no. 2, april 1988.

  10. A. Bayliss, M. Gunzburger and E. Turkel, “Boundary conditions for the numerical solution of elliptic equations in exterior regions,” NASA Langley Research Center, Report no. 80-1, January 11, 1980.

  11. A. Bayliss and E. Turkel, “Radiation boundary conditions for wave-like equations,” Communications on Pure and Applied Mathematics, John Wiley and Sons, Inc. vol. XXXIII, pp. 707-725, 1980.

  12. B. Engquist and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Mathematics of Computation, vol. 31, no. 139, pp. 629-651, july 1977.

  13. J. P. Webb and V. N. Kanellopoulos, “absorbing boundary conditions for finite element solution of the vector wave equation,” Microwave and Optical Technology letters, vol. 2, no. 10, October 1989.

  14. P. Persson and G. Strang, “A simple mesh generator in MATLAB,” SIAM Review, vol. 46, no. 2, pp.329-345, 2004.

  15. E. El Kennassi and L. Bousshine, “Three-dimensional mesh generation using Delaunay triangulation,” IOSR Journal of Mechanical and Civil Engineering, vol. 11, issue 6, ver. V, pp. 67-72, December 2014.

  16. Ansoft, “Antenna RF training guide,” ANSYS Inc. 2010.

  17. ANSYS HFSS, “Materials characteristics table”.

  18. G. J. Burke and A. J. Poggio, “Numerical electromagnetic code (NEC) method of moments,” Lawrence Livermore Laboratory, Interaction notes Livermore, California, July 1977.

  19. G. J. Burke and A. J. Poggio, “Numerical electromagnetic code (NEC) method of moments,” Lawrence Livermore Laboratory, Report UCID 18834, January 1981.


To view full paper, Download here .


To View Full Paper

Publishing with