Prospective Detection of Diabetic Retinopathy Using Modified CNN Models on Fundus Images: A Study at Al-Noor Institute, Al-Nasiriya
Atyaf Jarullah Yaseen
International Journal of Computational and Electronic Aspects in Engineering
Volume 6: Issue
3, July 2025, pp 168-179
Author's Information
Atyaf Jarullah Yaseen1
Corresponding Author
1Department of Computer Science , College of Computer Science and Mathematics,University of Thi-Qar,Iraq
atyafjarallah82@utq.edu.iq
Abstract:-
Diabetic retinopathy (DR) is considered to be the most common microvascular complication with diabetes mellitus and continues to be the main disease that causes vision impairment and blindness all over the world. Early-stage outcomes are, however, difficult to identify; they require highly qualified clinical retinal fundus photos interpretation to detect DR at an opportune stage in order to avert visual disability that would most probably be irreversible. The aim of this prospective study was to consider a deep learning-based diagnostic model, which is based on the modified convolutional neural network (CNN) trained and tested on a proprietary dataset and estimated in Al-Noor Institute in Al-Nasiriya in the Ophthalmology department. The goal of the model was to evaluate the quality of input fundus images, and group them in such categories as DR-positive, and DR-negative. Clinical ophthalmologists were used to check the production of the model and certify the results of model accuracy. The study used 398 patients (232 males and 166 femals) screened over a five weeks period. Compared to the expert-labeled ground truth, the proposed model had an accuracy of 93.72%, sensitivity of 97.30%, and a specificity of 92.90% initialization. This evidence underlines the feasibility of deep learning applications in helping to detect diabetic retinopathy early and especially in low-resource environments.Index Terms:-
Diabetic retinopathy. Fundus imaging, convolutional neural networks, deep learning, automated diagnosis, ophthalmologyREFERENCES
- Yau J.W.Y., Rogers S.L., Kawasaki R., Lamoureux E.L., Kowalski J.W., Bek T., Chen S.J., Dekker J.M., Fletcher A.,
Grauslund J., et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care. 2012;35:556–564.
doi: 10.2337/dc11-1909.
- Diabetic Retinopathy|AOA. [(accessed on 12 April 2022)]. Available online:
https://www.aoa.org/healthy-eyes/eye-and-vision-conditions/diabetic-retinopathy?sso=y.
- Diabetic Retinopathy Data and Statistics|National Eye Institute. [(accessed on 12 April 2022)]; Available online:
https://www.nei.nih.gov/learn-about-eye-health/outreach-campaigns-and-resources/eye-health-data-and-statistics/diabetic-retinopathy-data-and-statistics.
- Diabetic Retinopathy: A Growing Challenge in Pakistan|Blogs|Sightsavers. [(accessed on 5 August 2022)]. Available
online: https://www.sightsavers.org/blogs/2021/06/diabetic-retinopathy-in-pakistan/
- Li X., Hu X., Yu L., Zhu L., Fu C.W., Heng P.A. CANet: Cross-Disease Attention Network for Joint Diabetic
Retinopathy and Diabetic Macular Edema Grading. IEEE Trans. Med. Imaging. 2020;39:1483–1493. doi:
10.1109/TMI.2019.2951844.
- Kumar P.N.S., Deepak R.U., Sathar A., Sahasranamam V., Kumar R.R. Automated Detection System for Diabetic
Retinopathy Using Two Field Fundus Photography. Procedia Comput. Sci. 2016;93:486–494. doi: 10.1016/j.procs.2016.07.237.
- Zhu C.Z., Hu R., Zou B.J., Zhao R.C., Chen C.L., Xiao Y.L. Automatic Diabetic Retinopathy Screening via Cascaded
Framework Based on Image- and Lesion-Level Features Fusion. J. Comput. Sci. Technol. 2019 346. 2019;34:1307–1318. doi:
10.1007/s11390-019-1977-x.
- Sambyal N., Saini P., Syal R., Gupta V. Modified Residual Networks for Severity Stage Classification of Diabetic
Retinopathy. Evol. Syst. 2022:1–19. doi: 10.1007/s12530-022-09427-3.
- Khan A.I., Kshirsagar P.R., Manoharan H., Alsolami F., Almalawi A., Abushark Y.B., Alam M., Chamato F.A.
Computational Approach for Detection of Diabetes from Ocular Scans. Comput. Intell. Neurosci. 2022;2022:1–8. doi:
10.1155/2022/5066147.
- Ali R., Hardie R.C., Narayanan B.N., Kebede T.M. IMNets: Deep Learning Using an Incremental Modular Network
Synthesis Approach for Medical Imaging Applications. Appl. Sci. 2022;12:5500. doi: 10.3390/app12115500.
- Menaouer B., Dermane Z., El Houda Kebir N., Matta N. Diabetic Retinopathy Classification Using Hybrid Deep Learning
Approach. SN Comput. Sci. 2022;3:357. doi: 10.1007/s42979-022-01240-8.
- Gunasekaran K., Pitchai R., Chaitanya G.K., Selvaraj D., Annie Sheryl S., Almoallim H.S., Alharbi S.A., Raghavan
S.S., Tesemma B.G. A Deep Learning Framework for Earlier Prediction of Diabetic Retinopathy from Fundus Photographs.
Biomed Res. Int. 2022;2022:1–15. doi: 10.1155/2022/3163496.
- Khan A., Kulkarni N., Kumar A., Kamat A. D-CNN and Image Processing Based Approach for Diabetic Retinopathy
Classification. Appl. Inf. Process. Syst. 2022;1354:283–291. doi: 10.1007/978-981-16-2008-9_27.
- Fang L., Qiao H. Diabetic Retinopathy Classification Using a Novel DAG Network Based on Multi-Feature of Fundus
Images. Biomed. Signal Process. Control. 2022;77:103810. doi: 10.1016/j.bspc.2022.103810.
- Elloumi Y., Abroug N., Bedoui M.H. End-to-End Mobile System for Diabetic Retinopathy Screening Based on Lightweight
Deep Neural Network. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.)
2022;13205 LNCS:66–77. doi: 10.1007/978-3-031-01333-1_6/COVER.
- Kanakaprabha S., Radha D., Santhanalakshmi S. Diabetic Retinopathy Detection Using Deep Learning Models. Int.
2022;302:75–90. doi: 10.1007/978-981-19-2541-2_7.
- Sridhar S., PradeepKandhasamy J., Sinthuja M., Sterlin Minish T.N. Diabetic Retinopathy Detection Using
Convolutional Nueral Networks Algorithm. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.01.059.
- Das S., Kharbanda K., Suchetha M., Raman R., Dhas E. Deep Learning Architecture Based on Segmented Fundus Image
Features for Classification of Diabetic Retinopathy. Biomed. Signal Process. Control. 2021;68:102600. doi:
10.1016/j.bspc.2021.102600.
- Vives-Boix V., Ruiz-Fernández D. Diabetic Retinopathy Detection through Convolutional Neural Networks with Synaptic
Metaplasticity. Comput. Methods Programs Biomed. 2021;206:106094. doi: 10.1016/j.cmpb.2021.106094.
- Luo X., Pu Z., Xu Y., Wong W.K., Su J., Dou X., Ye B., Hu J., Mou L. MVDRNet: Multi-View Diabetic Retinopathy
Detection by Combining DCNNs and Attention Mechanisms. Pattern Recognit. 2021;120:108104. doi:
10.1016/j.patcog.2021.108104.
- Adriman R., Muchtar K., Maulina N. Performance Evaluation of Binary Classification of Diabetic Retinopathy through
Deep Learning Techniques Using Texture Feature. Procedia Comput. Sci. 2021;179:88–94. doi: 10.1016/j.procs.2020.12.012.
- Fatima, Imran M., Ullah A., Arif M., Noor R. A Unified Technique for Entropy Enhancement Based Diabetic Retinopathy
Detection Using Hybrid Neural Network. Comput. Biol. Med. 2022;145:105424. doi: 10.1016/j.compbiomed.2022.105424.
- Ragab M., Aljedaibi W.H., Nahhas A.F., Alzahrani I.R. Computer Aided Diagnosis of Diabetic Retinopathy Grading
Using Spiking Neural Network. Comput. Electr. Eng. 2022;101:108014. doi: 10.1016/j.compeleceng.2022.108014.
- Qureshi I., Ma J., Abbas Q. Diabetic retinopathy detection and stage classification in eye fundus images using
active deep learning. Multimed Tools Appl. 2021;80:11691–11721. doi: 10.1007/s11042-020-10238-4.
- Kalyani G., Janakiramaiah B., Karuna A., Prasad L.V. Narasimha Diabetic Retinopathy Detection and Classification
Using Capsule Networks. Complex Intell. Syst. 2021;2021:1–14. doi: 10.1007/S40747-021-00318-9.
- Gayathri S., Gopi V.P., Palanisamy P. Diabetic Retinopathy Classification Based on Multipath CNN and Machine
Learning Classifiers. Phys. Eng. Sci. Med. 2021;44:639–653. doi: 10.1007/s13246-021-01012-3.
- Bodapati J.D., Shaik N.S., Naralasetti V. Composite Deep Neural Network with Gated-Attention Mechanism for Diabetic
Retinopathy Severity Classification. J. Ambient Intell. Humaniz. Comput. 2021;12:9825–9839. doi:
10.1007/s12652-020-02727-z.
- Math L., Fatima R. Adaptive Machine Learning Classification for Diabetic Retinopathy. Multimed. Tools Appl.
2021;80:5173–5186. doi: 10.1007/s11042-020-09793-7.
- Gao Z., Jin K., Yan Y., Liu X., Shi Y., Ge Y., Pan X., Lu Y., Wu J., Wang Y., et al. End-to-End Diabetic
Retinopathy Grading Based on Fundus Fluorescein Angiography Images Using Deep Learning. Graefe’s Arch. Clin. Exp.
Ophthalmol. 2022;260:1663–1673. doi: 10.1007/s00417-021-05503-7.
- Kobat S.G., Baygin N., Yusufoglu E., Baygin M., Barua P.D., Dogan S., Yaman O., Celiker U., Yildirim H., Tan R.S.,
et al. Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET
with Digital Fundus Images. Diagnostics. 2022;12:1975. doi: 10.3390/diagnostics12081975.
- Latif G. DeepTumor: Framework for Brain MR Image Classification, Segmentation and Tumor Detection. Diagnostics.
2022;12:2888. doi: 10.3390/diagnostics12112888.
- Butt M.M., Iskandar D.N.F.A., Abdelhamid S.E., Latif G., Alghazo R. Diabetic Retinopathy Detection from Fundus
Images of the Eye Using Hybrid Deep Learning Features. Diagnostics. 2022;12:1607. doi: 10.3390/diagnostics12071607.
- Naseer I., Masood T., Akram S., Jaffar A., Rashid M., Iqbal M.A. Lung Cancer Detection Using Modified AlexNet
Architecture and Support Vector Machine. Comput. Mater. Contin. 2023;74:2039–2054.
- Shaimaa H.Mohammad, Israa Z. Chyad Alrikabi, Hayder Rahm Dakheel al- fayyadh, “Number Plate Recognition System
Based on an Improved Segmentation Method”, International Journal of Computational and Electronic Aspects in Engineering,
RAME Publishers, vol. 6, issue 1, pp. 42-50, 2025. https://doi.org/10.26706/ijceae.6.1.20250207 .
- Serri Ismael Hamad, “Utilizing Convolutional Neural Networks for the Identification of Lung Cancer”, International
Journal of Computational and Electronic Aspects in Engineering, RAME Publishers, vol. 6, issue 1, pp. 35-41,2025.
https://doi.org/10.26706/ijceae.6.1.20250206 .
- Hiyam Hatem, “improved deep learning models for plants diseases detection for smart farming”, international journal
of computational and electronic aspects in engineering,rame publishers, vol. 6, issue 1,pp. 10-21, 2025.
https://doi.org/10.26706/ijceae.6.1.20250204
To view full paper, Download here
To View Full Paper
For authors
Author's guidelines Publication Ethics Publication Policies Artical Processing Charges Call for paper Frequently Asked Questions(FAQS) View All Volumes and IssuesPublishing with



